Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 168
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Andersen
2
71 kgHayles
3
80 kgSweet
5
69 kgTang
9
71 kgTanner
16
70 kgValach
22
75 kgGrabsch
40
81 kgNewton
41
69 kgLipták
43
68 kgDvorščík
57
68 kgde Groot
58
65 kgGono
60
69 kgGeorge
63
61 kgLandry
64
77 kgEspiritu
65
56 kgGreen
74
75 kgWhite
75
72 kgCalcagni
79
65 kgWohlberg
80
63 kgMitchell
88
70 kg
2
71 kgHayles
3
80 kgSweet
5
69 kgTang
9
71 kgTanner
16
70 kgValach
22
75 kgGrabsch
40
81 kgNewton
41
69 kgLipták
43
68 kgDvorščík
57
68 kgde Groot
58
65 kgGono
60
69 kgGeorge
63
61 kgLandry
64
77 kgEspiritu
65
56 kgGreen
74
75 kgWhite
75
72 kgCalcagni
79
65 kgWohlberg
80
63 kgMitchell
88
70 kg
Weight (KG) →
Result →
81
56
2
88
# | Rider | Weight (KG) |
---|---|---|
2 | ANDERSEN Christian | 71 |
3 | HAYLES Robert | 80 |
5 | SWEET Jay | 69 |
9 | TANG Xuezhong | 71 |
16 | TANNER John | 70 |
22 | VALACH Ján | 75 |
40 | GRABSCH Ralf | 81 |
41 | NEWTON Christopher | 69 |
43 | LIPTÁK Miroslav | 68 |
57 | DVORŠČÍK Milan | 68 |
58 | DE GROOT Bram | 65 |
60 | GONO Marcel | 69 |
63 | GEORGE David | 61 |
64 | LANDRY Jacques | 77 |
65 | ESPIRITU Victor | 56 |
74 | GREEN Roland | 75 |
75 | WHITE Matthew | 72 |
79 | CALCAGNI Patrick | 65 |
80 | WOHLBERG Eric | 63 |
88 | MITCHELL Glen | 70 |