Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Fraser
1
71 kgHaselbacher
4
69 kgLandis
7
68 kgDrew
8
72 kgNazon
9
68 kgO'Neill
12
72 kgTeutenberg
14
66 kgKoerts
18
78 kgMagnusson
20
70 kgStephens
22
64 kgMickiewicz
23
74 kgPower
24
68 kgVestøl
25
85 kgTrenti
26
68 kgKristensen
27
70 kgVogels
29
75 kgOrdowski
31
59 kgCruz
34
66 kgHorner
35
70 kgSivakov
36
72 kgWong
38
65 kgPankov
42
72 kgBénéteau
43
67 kgUsov
44
63 kg
1
71 kgHaselbacher
4
69 kgLandis
7
68 kgDrew
8
72 kgNazon
9
68 kgO'Neill
12
72 kgTeutenberg
14
66 kgKoerts
18
78 kgMagnusson
20
70 kgStephens
22
64 kgMickiewicz
23
74 kgPower
24
68 kgVestøl
25
85 kgTrenti
26
68 kgKristensen
27
70 kgVogels
29
75 kgOrdowski
31
59 kgCruz
34
66 kgHorner
35
70 kgSivakov
36
72 kgWong
38
65 kgPankov
42
72 kgBénéteau
43
67 kgUsov
44
63 kg
Weight (KG) →
Result →
85
59
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | FRASER Gordon | 71 |
4 | HASELBACHER René | 69 |
7 | LANDIS Floyd | 68 |
8 | DREW Jamie Peter | 72 |
9 | NAZON Damien | 68 |
12 | O'NEILL Nathan | 72 |
14 | TEUTENBERG Sven | 66 |
18 | KOERTS Jans | 78 |
20 | MAGNUSSON Glenn | 70 |
22 | STEPHENS Matthew | 64 |
23 | MICKIEWICZ Jacek | 74 |
24 | POWER Ciarán | 68 |
25 | VESTØL Bjørnar | 85 |
26 | TRENTI Guido | 68 |
27 | KRISTENSEN Lennie | 70 |
29 | VOGELS Henk | 75 |
31 | ORDOWSKI Volker | 59 |
34 | CRUZ Antonio | 66 |
35 | HORNER Chris | 70 |
36 | SIVAKOV Alexei | 72 |
38 | WONG Kam-Po | 65 |
42 | PANKOV Oleg | 72 |
43 | BÉNÉTEAU Walter | 67 |
44 | USOV Alexandre | 63 |