Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Hervé
2
62 kgBettini
3
58 kgBénéteau
6
67 kgBramati
7
72 kgZargari
9
62 kgJenner
10
68 kgLudewig
11
75 kgNocentini
13
60 kgNieto
15
68 kgUsov
16
63 kgJørgensen
17
60 kgBarry
18
72 kgHinault
21
63 kgMizbani
22
67 kgAxelsson
23
73 kgPospyeyev
24
71 kgO'Neill
25
72 kgKristensen
27
70 kg
2
62 kgBettini
3
58 kgBénéteau
6
67 kgBramati
7
72 kgZargari
9
62 kgJenner
10
68 kgLudewig
11
75 kgNocentini
13
60 kgNieto
15
68 kgUsov
16
63 kgJørgensen
17
60 kgBarry
18
72 kgHinault
21
63 kgMizbani
22
67 kgAxelsson
23
73 kgPospyeyev
24
71 kgO'Neill
25
72 kgKristensen
27
70 kg
Weight (KG) →
Result →
75
58
2
27
# | Rider | Weight (KG) |
---|---|---|
2 | HERVÉ Pascal | 62 |
3 | BETTINI Paolo | 58 |
6 | BÉNÉTEAU Walter | 67 |
7 | BRAMATI Davide | 72 |
9 | ZARGARI Amir | 62 |
10 | JENNER Christopher | 68 |
11 | LUDEWIG Jörg | 75 |
13 | NOCENTINI Rinaldo | 60 |
15 | NIETO Germán | 68 |
16 | USOV Alexandre | 63 |
17 | JØRGENSEN René | 60 |
18 | BARRY Michael | 72 |
21 | HINAULT Sébastien | 63 |
22 | MIZBANI Ghader | 67 |
23 | AXELSSON Niklas | 73 |
24 | POSPYEYEV Kyrylo | 71 |
25 | O'NEILL Nathan | 72 |
27 | KRISTENSEN Lennie | 70 |