Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Koerts
1
78 kgBettini
2
58 kgUsov
3
63 kgDegano
4
68 kgFraser
5
71 kgWrolich
7
68 kgStrazzer
9
68 kgHinault
10
63 kgMori
15
77 kgVoigt
17
76 kgBalčiūnas
18
90 kgAggiano
19
63 kgNaudužs
20
78 kgBarry
21
72 kgPankov
22
72 kgZargari
26
62 kgFlecha
27
72 kgHorrillo
29
76 kgArvesen
32
74 kgMiller
33
72 kgHorner
36
70 kgVogels
38
75 kgSandstød
40
74 kg
1
78 kgBettini
2
58 kgUsov
3
63 kgDegano
4
68 kgFraser
5
71 kgWrolich
7
68 kgStrazzer
9
68 kgHinault
10
63 kgMori
15
77 kgVoigt
17
76 kgBalčiūnas
18
90 kgAggiano
19
63 kgNaudužs
20
78 kgBarry
21
72 kgPankov
22
72 kgZargari
26
62 kgFlecha
27
72 kgHorrillo
29
76 kgArvesen
32
74 kgMiller
33
72 kgHorner
36
70 kgVogels
38
75 kgSandstød
40
74 kg
Weight (KG) →
Result →
90
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | KOERTS Jans | 78 |
2 | BETTINI Paolo | 58 |
3 | USOV Alexandre | 63 |
4 | DEGANO Enrico | 68 |
5 | FRASER Gordon | 71 |
7 | WROLICH Peter | 68 |
9 | STRAZZER Massimo | 68 |
10 | HINAULT Sébastien | 63 |
15 | MORI Massimiliano | 77 |
17 | VOIGT Jens | 76 |
18 | BALČIŪNAS Linas | 90 |
19 | AGGIANO Elio | 63 |
20 | NAUDUŽS Andris | 78 |
21 | BARRY Michael | 72 |
22 | PANKOV Oleg | 72 |
26 | ZARGARI Amir | 62 |
27 | FLECHA Juan Antonio | 72 |
29 | HORRILLO Pedro | 76 |
32 | ARVESEN Kurt-Asle | 74 |
33 | MILLER Graeme | 72 |
36 | HORNER Chris | 70 |
38 | VOGELS Henk | 75 |
40 | SANDSTØD Michael | 74 |