Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Hunter
1
72 kgTafi
2
73 kgDegano
4
68 kgBrown
8
76 kgO'Neill
9
72 kgWohlberg
10
63 kgCañada
14
65 kgMarín
15
55 kgKristensen
21
70 kgWegelius
22
62 kgBalčiūnas
26
90 kgSuzuki
33
60 kgLeukemans
37
67 kgLe Mével
40
61 kgAmorison
41
70 kgMatveyev
42
78 kgNieto
43
68 kgElli
44
71 kgMändoja
45
69 kg
1
72 kgTafi
2
73 kgDegano
4
68 kgBrown
8
76 kgO'Neill
9
72 kgWohlberg
10
63 kgCañada
14
65 kgMarín
15
55 kgKristensen
21
70 kgWegelius
22
62 kgBalčiūnas
26
90 kgSuzuki
33
60 kgLeukemans
37
67 kgLe Mével
40
61 kgAmorison
41
70 kgMatveyev
42
78 kgNieto
43
68 kgElli
44
71 kgMändoja
45
69 kg
Weight (KG) →
Result →
90
55
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | HUNTER Robert | 72 |
2 | TAFI Andrea | 73 |
4 | DEGANO Enrico | 68 |
8 | BROWN Graeme Allen | 76 |
9 | O'NEILL Nathan | 72 |
10 | WOHLBERG Eric | 63 |
14 | CAÑADA David | 65 |
15 | MARÍN Ruber Alveiro | 55 |
21 | KRISTENSEN Lennie | 70 |
22 | WEGELIUS Charles | 62 |
26 | BALČIŪNAS Linas | 90 |
33 | SUZUKI Shinri | 60 |
37 | LEUKEMANS Björn | 67 |
40 | LE MÉVEL Christophe | 61 |
41 | AMORISON Frédéric | 70 |
42 | MATVEYEV Sergiy | 78 |
43 | NIETO Germán | 68 |
44 | ELLI Alberto | 71 |
45 | MÄNDOJA Innar | 69 |