Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
O'Neill
1
72 kgPagliarini
2
68 kgGreen
3
75 kgBrown
4
76 kgDanielson
5
58.5 kgGonzález
6
55 kgWohlberg
8
63 kgAug
9
83 kgMatveyev
11
78 kgO'Grady
17
73 kgFraser
18
71 kgMcgrath
20
62 kgBak
24
76 kgAskari
25
73 kgLancaster
26
78 kgMartín Perdiguero
28
63 kgBaliani
29
66 kg
1
72 kgPagliarini
2
68 kgGreen
3
75 kgBrown
4
76 kgDanielson
5
58.5 kgGonzález
6
55 kgWohlberg
8
63 kgAug
9
83 kgMatveyev
11
78 kgO'Grady
17
73 kgFraser
18
71 kgMcgrath
20
62 kgBak
24
76 kgAskari
25
73 kgLancaster
26
78 kgMartín Perdiguero
28
63 kgBaliani
29
66 kg
Weight (KG) →
Result →
83
55
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | O'NEILL Nathan | 72 |
2 | PAGLIARINI Luciano André | 68 |
3 | GREEN Roland | 75 |
4 | BROWN Graeme Allen | 76 |
5 | DANIELSON Tom | 58.5 |
6 | GONZÁLEZ Freddy Excelino | 55 |
8 | WOHLBERG Eric | 63 |
9 | AUG Andrus | 83 |
11 | MATVEYEV Sergiy | 78 |
17 | O'GRADY Stuart | 73 |
18 | FRASER Gordon | 71 |
20 | MCGRATH Seamus | 62 |
24 | BAK Lars Ytting | 76 |
25 | ASKARI Hossein | 73 |
26 | LANCASTER Brett | 78 |
28 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
29 | BALIANI Fortunato | 66 |