Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Pagliarini
1
68 kgBrown
2
76 kgO'Grady
4
73 kgAug
5
83 kgO'Neill
9
72 kgGreen
10
75 kgWohlberg
11
63 kgDanielson
13
58.5 kgGonzález
14
55 kgFraser
15
71 kgMatveyev
17
78 kgDe Groote
18
71 kgMcgrath
23
62 kgBak
26
76 kgAskari
27
73 kgLancaster
30
78 kgMartín Perdiguero
33
63 kgBelohvoščiks
34
70 kgBaliani
37
66 kgJufré
40
65 kg
1
68 kgBrown
2
76 kgO'Grady
4
73 kgAug
5
83 kgO'Neill
9
72 kgGreen
10
75 kgWohlberg
11
63 kgDanielson
13
58.5 kgGonzález
14
55 kgFraser
15
71 kgMatveyev
17
78 kgDe Groote
18
71 kgMcgrath
23
62 kgBak
26
76 kgAskari
27
73 kgLancaster
30
78 kgMartín Perdiguero
33
63 kgBelohvoščiks
34
70 kgBaliani
37
66 kgJufré
40
65 kg
Weight (KG) →
Result →
83
55
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | PAGLIARINI Luciano André | 68 |
2 | BROWN Graeme Allen | 76 |
4 | O'GRADY Stuart | 73 |
5 | AUG Andrus | 83 |
9 | O'NEILL Nathan | 72 |
10 | GREEN Roland | 75 |
11 | WOHLBERG Eric | 63 |
13 | DANIELSON Tom | 58.5 |
14 | GONZÁLEZ Freddy Excelino | 55 |
15 | FRASER Gordon | 71 |
17 | MATVEYEV Sergiy | 78 |
18 | DE GROOTE Thierry | 71 |
23 | MCGRATH Seamus | 62 |
26 | BAK Lars Ytting | 76 |
27 | ASKARI Hossein | 73 |
30 | LANCASTER Brett | 78 |
33 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
34 | BELOHVOŠČIKS Raivis | 70 |
37 | BALIANI Fortunato | 66 |
40 | JUFRÉ Josep | 65 |