Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Radochla
1
70 kgRicheze
2
68 kgPütsep
3
69 kgMiyazawa
4
61 kgAggiano
8
63 kgCavendish
9
70 kgMeirhaeghe
11
70 kgHabeaux
14
68 kgBellotti
15
65 kgRavard
16
62 kgSchmidt
19
73 kgPedraza
20
58 kgHinault
22
63 kgLefèvre
25
67 kgMatveyev
28
78 kgPoilvet
29
71 kgGeorge
30
61 kgRenders
32
63 kg
1
70 kgRicheze
2
68 kgPütsep
3
69 kgMiyazawa
4
61 kgAggiano
8
63 kgCavendish
9
70 kgMeirhaeghe
11
70 kgHabeaux
14
68 kgBellotti
15
65 kgRavard
16
62 kgSchmidt
19
73 kgPedraza
20
58 kgHinault
22
63 kgLefèvre
25
67 kgMatveyev
28
78 kgPoilvet
29
71 kgGeorge
30
61 kgRenders
32
63 kg
Weight (KG) →
Result →
78
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | RADOCHLA Steffen | 70 |
2 | RICHEZE Maximiliano | 68 |
3 | PÜTSEP Erki | 69 |
4 | MIYAZAWA Takashi | 61 |
8 | AGGIANO Elio | 63 |
9 | CAVENDISH Mark | 70 |
11 | MEIRHAEGHE Filip | 70 |
14 | HABEAUX Grégory | 68 |
15 | BELLOTTI Francesco | 65 |
16 | RAVARD Anthony | 62 |
19 | SCHMIDT Torsten | 73 |
20 | PEDRAZA Wálter Fernando | 58 |
22 | HINAULT Sébastien | 63 |
25 | LEFÈVRE Laurent | 67 |
28 | MATVEYEV Sergiy | 78 |
29 | POILVET Benoît | 71 |
30 | GEORGE David | 61 |
32 | RENDERS Sven | 63 |