Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Radochla
1
70 kgSerpa
2
64 kgMcCann
3
73 kgCavendish
6
70 kgBellotti
7
65 kgHinault
8
63 kgPütsep
9
69 kgAggiano
10
63 kgOliphant
14
66 kgClement
15
66 kgle Boulanger
18
70 kgGeorge
19
61 kgHabeaux
20
68 kgRicheze
21
68 kgDowning
23
64 kgPedraza
26
58 kgMangel
27
83 kgMiyazawa
28
61 kgRavard
29
62 kgTondo
30
68 kgMatveyev
31
78 kgMeirhaeghe
33
70 kgSchmidt
34
73 kg
1
70 kgSerpa
2
64 kgMcCann
3
73 kgCavendish
6
70 kgBellotti
7
65 kgHinault
8
63 kgPütsep
9
69 kgAggiano
10
63 kgOliphant
14
66 kgClement
15
66 kgle Boulanger
18
70 kgGeorge
19
61 kgHabeaux
20
68 kgRicheze
21
68 kgDowning
23
64 kgPedraza
26
58 kgMangel
27
83 kgMiyazawa
28
61 kgRavard
29
62 kgTondo
30
68 kgMatveyev
31
78 kgMeirhaeghe
33
70 kgSchmidt
34
73 kg
Weight (KG) →
Result →
83
58
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | RADOCHLA Steffen | 70 |
2 | SERPA José Rodolfo | 64 |
3 | MCCANN David | 73 |
6 | CAVENDISH Mark | 70 |
7 | BELLOTTI Francesco | 65 |
8 | HINAULT Sébastien | 63 |
9 | PÜTSEP Erki | 69 |
10 | AGGIANO Elio | 63 |
14 | OLIPHANT Evan | 66 |
15 | CLEMENT Stef | 66 |
18 | LE BOULANGER Yoann | 70 |
19 | GEORGE David | 61 |
20 | HABEAUX Grégory | 68 |
21 | RICHEZE Maximiliano | 68 |
23 | DOWNING Russell | 64 |
26 | PEDRAZA Wálter Fernando | 58 |
27 | MANGEL Laurent | 83 |
28 | MIYAZAWA Takashi | 61 |
29 | RAVARD Anthony | 62 |
30 | TONDO Xavier | 68 |
31 | MATVEYEV Sergiy | 78 |
33 | MEIRHAEGHE Filip | 70 |
34 | SCHMIDT Torsten | 73 |