Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Matthews
2
72 kgTleubayev
5
70 kgHaselbacher
6
69 kgThomson
7
75 kgGrabovskyy
9
69 kgSaleh
13
58 kgWeissinger
17
74 kgEibegger
19
68 kgBell
20
75 kgBrändle
22
80 kgNishitani
25
62 kgWalker
26
63 kgKvachuk
29
68 kgSohrabi
31
69 kgPidgornyy
32
72 kgWang
35
70 kgDe Negri
36
61 kgRudolph
37
69 kg
2
72 kgTleubayev
5
70 kgHaselbacher
6
69 kgThomson
7
75 kgGrabovskyy
9
69 kgSaleh
13
58 kgWeissinger
17
74 kgEibegger
19
68 kgBell
20
75 kgBrändle
22
80 kgNishitani
25
62 kgWalker
26
63 kgKvachuk
29
68 kgSohrabi
31
69 kgPidgornyy
32
72 kgWang
35
70 kgDe Negri
36
61 kgRudolph
37
69 kg
Weight (KG) →
Result →
80
58
2
37
# | Rider | Weight (KG) |
---|---|---|
2 | MATTHEWS Michael | 72 |
5 | TLEUBAYEV Ruslan | 70 |
6 | HASELBACHER René | 69 |
7 | THOMSON Jay Robert | 75 |
9 | GRABOVSKYY Dmytro | 69 |
13 | SALEH Mohd Zamri | 58 |
17 | WEISSINGER René | 74 |
19 | EIBEGGER Markus | 68 |
20 | BELL Zach | 75 |
22 | BRÄNDLE Matthias | 80 |
25 | NISHITANI Taiji | 62 |
26 | WALKER Johnnie | 63 |
29 | KVACHUK Oleksandr | 68 |
31 | SOHRABI Mehdi | 69 |
32 | PIDGORNYY Ruslan | 72 |
35 | WANG Meiyin | 70 |
36 | DE NEGRI Pier Paolo | 61 |
37 | RUDOLPH Malcolm | 69 |