Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Matthews
1
72 kgHaselbacher
5
69 kgTleubayev
6
70 kgGrabovskyy
7
69 kgThomson
9
75 kgNishitani
11
62 kgWeissinger
14
74 kgSaleh
17
58 kgEibegger
22
68 kgBell
25
75 kgBrändle
26
80 kgAckermann
27
62 kgWalker
30
63 kgKvachuk
35
68 kgSohrabi
36
69 kgPidgornyy
37
72 kgWang
39
70 kgDe Negri
41
61 kgRudolph
42
69 kg
1
72 kgHaselbacher
5
69 kgTleubayev
6
70 kgGrabovskyy
7
69 kgThomson
9
75 kgNishitani
11
62 kgWeissinger
14
74 kgSaleh
17
58 kgEibegger
22
68 kgBell
25
75 kgBrändle
26
80 kgAckermann
27
62 kgWalker
30
63 kgKvachuk
35
68 kgSohrabi
36
69 kgPidgornyy
37
72 kgWang
39
70 kgDe Negri
41
61 kgRudolph
42
69 kg
Weight (KG) →
Result →
80
58
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | MATTHEWS Michael | 72 |
5 | HASELBACHER René | 69 |
6 | TLEUBAYEV Ruslan | 70 |
7 | GRABOVSKYY Dmytro | 69 |
9 | THOMSON Jay Robert | 75 |
11 | NISHITANI Taiji | 62 |
14 | WEISSINGER René | 74 |
17 | SALEH Mohd Zamri | 58 |
22 | EIBEGGER Markus | 68 |
25 | BELL Zach | 75 |
26 | BRÄNDLE Matthias | 80 |
27 | ACKERMANN Silvère | 62 |
30 | WALKER Johnnie | 63 |
35 | KVACHUK Oleksandr | 68 |
36 | SOHRABI Mehdi | 69 |
37 | PIDGORNYY Ruslan | 72 |
39 | WANG Meiyin | 70 |
41 | DE NEGRI Pier Paolo | 61 |
42 | RUDOLPH Malcolm | 69 |