Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Guardini
1
66 kgKittel
3
82 kgShpilevsky
4
78 kgvan Hummel
6
64 kgSchulze
7
70 kgSaleh
8
70 kgCommeyne
10
70 kgJang
11
64 kgClarke
12
70 kgBrown
15
75 kgKreder
17
70 kgFavilli
20
61 kgStallaert
22
72 kgCarlsen
23
68 kgPasqualon
24
75 kgBourgeois
26
61 kgSohrabi
27
69 kgMat Amin
28
54 kgFörster
31
83 kgDe Patre
32
66 kgHaghi
33
78 kgBulgarelli
36
69 kg
1
66 kgKittel
3
82 kgShpilevsky
4
78 kgvan Hummel
6
64 kgSchulze
7
70 kgSaleh
8
70 kgCommeyne
10
70 kgJang
11
64 kgClarke
12
70 kgBrown
15
75 kgKreder
17
70 kgFavilli
20
61 kgStallaert
22
72 kgCarlsen
23
68 kgPasqualon
24
75 kgBourgeois
26
61 kgSohrabi
27
69 kgMat Amin
28
54 kgFörster
31
83 kgDe Patre
32
66 kgHaghi
33
78 kgBulgarelli
36
69 kg
Weight (KG) →
Result →
83
54
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | GUARDINI Andrea | 66 |
3 | KITTEL Marcel | 82 |
4 | SHPILEVSKY Boris | 78 |
6 | VAN HUMMEL Kenny | 64 |
7 | SCHULZE André | 70 |
8 | SALEH Mohd Harrif | 70 |
10 | COMMEYNE Davy | 70 |
11 | JANG Chan Jae | 64 |
12 | CLARKE Hilton | 70 |
15 | BROWN Arran | 75 |
17 | KREDER Raymond | 70 |
20 | FAVILLI Elia | 61 |
22 | STALLAERT Joeri | 72 |
23 | CARLSEN Kirk | 68 |
24 | PASQUALON Andrea | 75 |
26 | BOURGEOIS Guillaume | 61 |
27 | SOHRABI Mehdi | 69 |
28 | MAT AMIN Mohd Shahrul | 54 |
31 | FÖRSTER Robert | 83 |
32 | DE PATRE Roberto | 66 |
33 | HAGHI Alireza | 78 |
36 | BULGARELLI Otavio | 69 |