Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Guardini
1
66 kgKreder
3
70 kgIglinskiy
5
68 kgColbrelli
8
74 kgDelle Stelle
9
65 kgGoesinnen
13
75 kgGène
14
67 kgNishitani
16
62 kgFukushima
17
62 kgCanola
19
66 kgSaleh
20
58 kgSeo
22
66 kgJang
24
64 kgHaghi
25
78 kgGonzález
26
55 kgTong
27
70 kgDyachenko
28
65 kgSaleh
29
70 kg
1
66 kgKreder
3
70 kgIglinskiy
5
68 kgColbrelli
8
74 kgDelle Stelle
9
65 kgGoesinnen
13
75 kgGène
14
67 kgNishitani
16
62 kgFukushima
17
62 kgCanola
19
66 kgSaleh
20
58 kgSeo
22
66 kgJang
24
64 kgHaghi
25
78 kgGonzález
26
55 kgTong
27
70 kgDyachenko
28
65 kgSaleh
29
70 kg
Weight (KG) →
Result →
78
55
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | GUARDINI Andrea | 66 |
3 | KREDER Raymond | 70 |
5 | IGLINSKIY Valentin | 68 |
8 | COLBRELLI Sonny | 74 |
9 | DELLE STELLE Christian | 65 |
13 | GOESINNEN Floris | 75 |
14 | GÈNE Yohann | 67 |
16 | NISHITANI Taiji | 62 |
17 | FUKUSHIMA Shinichi | 62 |
19 | CANOLA Marco | 66 |
20 | SALEH Mohd Zamri | 58 |
22 | SEO Joon Yong | 66 |
24 | JANG Chan Jae | 64 |
25 | HAGHI Alireza | 78 |
26 | GONZÁLEZ Freddy Excelino | 55 |
27 | TONG Weisong | 70 |
28 | DYACHENKO Alexandr | 65 |
29 | SALEH Mohd Harrif | 70 |