Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Brammeier
1
72 kgBolivar
2
64 kgKudus
4
58 kgMonsalve
5
62 kgAsadov
7
77 kgChaves
8
55 kgKruijswijk
9
63 kgPhounsavath
10
67 kgIgnatenko
11
63 kgJanse van Rensburg
12
63 kgQuintero
13
63 kgWhite
15
77 kgBobridge
16
65 kgZilioli
17
61 kgMeintjes
18
58 kgClarke
20
68 kgGoh
22
54 kgWeening
27
68 kgHaller
30
72 kgLamoisson
31
69 kg
1
72 kgBolivar
2
64 kgKudus
4
58 kgMonsalve
5
62 kgAsadov
7
77 kgChaves
8
55 kgKruijswijk
9
63 kgPhounsavath
10
67 kgIgnatenko
11
63 kgJanse van Rensburg
12
63 kgQuintero
13
63 kgWhite
15
77 kgBobridge
16
65 kgZilioli
17
61 kgMeintjes
18
58 kgClarke
20
68 kgGoh
22
54 kgWeening
27
68 kgHaller
30
72 kgLamoisson
31
69 kg
Weight (KG) →
Result →
77
54
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | BRAMMEIER Matt | 72 |
2 | BOLIVAR Isaac | 64 |
4 | KUDUS Merhawi | 58 |
5 | MONSALVE Yonathan | 62 |
7 | ASADOV Elchin | 77 |
8 | CHAVES Esteban | 55 |
9 | KRUIJSWIJK Steven | 63 |
10 | PHOUNSAVATH Ariya | 67 |
11 | IGNATENKO Petr | 63 |
12 | JANSE VAN RENSBURG Jacques | 63 |
13 | QUINTERO Carlos | 63 |
15 | WHITE Bradley | 77 |
16 | BOBRIDGE Jack | 65 |
17 | ZILIOLI Gianfranco | 61 |
18 | MEINTJES Louis | 58 |
20 | CLARKE Jonathan | 68 |
22 | GOH Choon Huat | 54 |
27 | WEENING Pieter | 68 |
30 | HALLER Marco | 72 |
31 | LAMOISSON Morgan | 69 |