Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brammeier
2
72 kgClarke
3
68 kgKolář
4
90 kgKruopis
5
80 kgBos
6
77 kgGoh
8
54 kgBrown
9
76 kgHaller
11
72 kgGuardini
12
66 kgAsadov
14
77 kgReguigui
15
69 kgvan Hummel
16
64 kgNishitani
17
62 kgKochetkov
20
70 kgSohrabi
21
69 kgLancaster
22
78 kgPorsev
23
80 kgFukuda
25
70 kgMartinez
27
69 kgSaleh
28
58 kg
2
72 kgClarke
3
68 kgKolář
4
90 kgKruopis
5
80 kgBos
6
77 kgGoh
8
54 kgBrown
9
76 kgHaller
11
72 kgGuardini
12
66 kgAsadov
14
77 kgReguigui
15
69 kgvan Hummel
16
64 kgNishitani
17
62 kgKochetkov
20
70 kgSohrabi
21
69 kgLancaster
22
78 kgPorsev
23
80 kgFukuda
25
70 kgMartinez
27
69 kgSaleh
28
58 kg
Weight (KG) →
Result →
90
54
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | BRAMMEIER Matt | 72 |
3 | CLARKE Jonathan | 68 |
4 | KOLÁŘ Michael | 90 |
5 | KRUOPIS Aidis | 80 |
6 | BOS Theo | 77 |
8 | GOH Choon Huat | 54 |
9 | BROWN Graeme Allen | 76 |
11 | HALLER Marco | 72 |
12 | GUARDINI Andrea | 66 |
14 | ASADOV Elchin | 77 |
15 | REGUIGUI Youcef | 69 |
16 | VAN HUMMEL Kenny | 64 |
17 | NISHITANI Taiji | 62 |
20 | KOCHETKOV Pavel | 70 |
21 | SOHRABI Mehdi | 69 |
22 | LANCASTER Brett | 78 |
23 | PORSEV Alexander | 80 |
25 | FUKUDA Shinpei | 70 |
27 | MARTINEZ Yannick | 69 |
28 | SALEH Mohd Zamri | 58 |