Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Brammeier
1
72 kgBolivar
2
64 kgKudus
4
58 kgChaves
7
55 kgKruijswijk
8
63 kgPhounsavath
9
67 kgIgnatenko
10
63 kgMonsalve
11
62 kgJanse van Rensburg
12
63 kgWhite
14
77 kgBobridge
15
65 kgZilioli
16
61 kgAsadov
17
77 kgMeintjes
18
58 kgQuintero
20
63 kgClarke
21
68 kgWeening
25
68 kgGoh
26
54 kgHaller
29
72 kgLamoisson
30
69 kg
1
72 kgBolivar
2
64 kgKudus
4
58 kgChaves
7
55 kgKruijswijk
8
63 kgPhounsavath
9
67 kgIgnatenko
10
63 kgMonsalve
11
62 kgJanse van Rensburg
12
63 kgWhite
14
77 kgBobridge
15
65 kgZilioli
16
61 kgAsadov
17
77 kgMeintjes
18
58 kgQuintero
20
63 kgClarke
21
68 kgWeening
25
68 kgGoh
26
54 kgHaller
29
72 kgLamoisson
30
69 kg
Weight (KG) →
Result →
77
54
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BRAMMEIER Matt | 72 |
2 | BOLIVAR Isaac | 64 |
4 | KUDUS Merhawi | 58 |
7 | CHAVES Esteban | 55 |
8 | KRUIJSWIJK Steven | 63 |
9 | PHOUNSAVATH Ariya | 67 |
10 | IGNATENKO Petr | 63 |
11 | MONSALVE Yonathan | 62 |
12 | JANSE VAN RENSBURG Jacques | 63 |
14 | WHITE Bradley | 77 |
15 | BOBRIDGE Jack | 65 |
16 | ZILIOLI Gianfranco | 61 |
17 | ASADOV Elchin | 77 |
18 | MEINTJES Louis | 58 |
20 | QUINTERO Carlos | 63 |
21 | CLARKE Jonathan | 68 |
25 | WEENING Pieter | 68 |
26 | GOH Choon Huat | 54 |
29 | HALLER Marco | 72 |
30 | LAMOISSON Morgan | 69 |