Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Wang
1
70 kgGuardini
2
66 kgPalini
3
67 kgJanse van Rensburg
4
74 kgMurphy
5
81 kgKolář
6
90 kgJones
7
81 kgOthman
8
57 kgPage
10
64 kgNovardianto
11
69 kgMareczko
12
67 kgHasnaoui
14
80 kgBrown
15
76 kgDomagalski
16
77 kgFukuda
17
70 kgPacioni
19
67 kgBenfatto
20
71 kgHarper
21
67 kgSaleh
22
70 kg
1
70 kgGuardini
2
66 kgPalini
3
67 kgJanse van Rensburg
4
74 kgMurphy
5
81 kgKolář
6
90 kgJones
7
81 kgOthman
8
57 kgPage
10
64 kgNovardianto
11
69 kgMareczko
12
67 kgHasnaoui
14
80 kgBrown
15
76 kgDomagalski
16
77 kgFukuda
17
70 kgPacioni
19
67 kgBenfatto
20
71 kgHarper
21
67 kgSaleh
22
70 kg
Weight (KG) →
Result →
90
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | WANG Meiyin | 70 |
2 | GUARDINI Andrea | 66 |
3 | PALINI Andrea | 67 |
4 | JANSE VAN RENSBURG Reinardt | 74 |
5 | MURPHY John | 81 |
6 | KOLÁŘ Michael | 90 |
7 | JONES Brenton | 81 |
8 | OTHMAN Muhamad Afiq Husaine | 57 |
10 | PAGE Dylan | 64 |
11 | NOVARDIANTO Jamalidin | 69 |
12 | MARECZKO Jakub | 67 |
14 | HASNAOUI Maher | 80 |
15 | BROWN Graeme Allen | 76 |
16 | DOMAGALSKI Karol | 77 |
17 | FUKUDA Shinpei | 70 |
19 | PACIONI Luca | 67 |
20 | BENFATTO Marco | 71 |
21 | HARPER George | 67 |
22 | SALEH Mohd Harrif | 70 |