Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Culey
1
69 kgFreiberg
2
82 kgSimion
3
79 kgSaleh
5
70 kgDavids
6
72 kgMcCabe
8
72 kgGuardini
9
66 kgKuboki
10
68 kgBenfatto
11
71 kgJulius
12
59 kgSaleh
14
58 kgStash
15
77 kgCherkasov
17
68 kgQuick
20
77 kgIribe
23
61 kgDonohoe
25
62 kgBisolti
26
58 kgRaileanu
27
63 kgReguigui
28
69 kgBogdanovičs
30
68 kgChrétien
31
65 kgZulkifli
32
65 kg
1
69 kgFreiberg
2
82 kgSimion
3
79 kgSaleh
5
70 kgDavids
6
72 kgMcCabe
8
72 kgGuardini
9
66 kgKuboki
10
68 kgBenfatto
11
71 kgJulius
12
59 kgSaleh
14
58 kgStash
15
77 kgCherkasov
17
68 kgQuick
20
77 kgIribe
23
61 kgDonohoe
25
62 kgBisolti
26
58 kgRaileanu
27
63 kgReguigui
28
69 kgBogdanovičs
30
68 kgChrétien
31
65 kgZulkifli
32
65 kg
Weight (KG) →
Result →
82
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | CULEY Marcus | 69 |
2 | FREIBERG Michael | 82 |
3 | SIMION Paolo | 79 |
5 | SALEH Mohd Harrif | 70 |
6 | DAVIDS Brendon | 72 |
8 | MCCABE Travis | 72 |
9 | GUARDINI Andrea | 66 |
10 | KUBOKI Kazushige | 68 |
11 | BENFATTO Marco | 71 |
12 | JULIUS Jayde | 59 |
14 | SALEH Mohd Zamri | 58 |
15 | STASH Mamyr | 77 |
17 | CHERKASOV Nikolay | 68 |
20 | QUICK Blake | 77 |
23 | IRIBE Shotaro | 61 |
25 | DONOHOE Alistair | 62 |
26 | BISOLTI Alessandro | 58 |
27 | RAILEANU Cristian | 63 |
28 | REGUIGUI Youcef | 69 |
30 | BOGDANOVIČS Māris | 68 |
31 | CHRÉTIEN Charles-Étienne | 65 |
32 | ZULKIFLI Nik Mohamad Azman | 65 |