Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
McCabe
1
72 kgFreiberg
2
82 kgGuardini
3
66 kgSaleh
4
70 kgKuboki
5
68 kgSimion
6
79 kgCuley
7
69 kgDavids
12
72 kgPelucchi
13
74 kgQuick
14
77 kgJulius
15
59 kgBogdanovičs
17
68 kgBenfatto
18
71 kgCherkasov
19
68 kgSaleh
20
58 kgStash
21
77 kgIribe
27
61 kgDonohoe
28
62 kgBisolti
29
58 kgRaileanu
30
63 kgReguigui
31
69 kgChrétien
33
65 kgZulkifli
34
65 kg
1
72 kgFreiberg
2
82 kgGuardini
3
66 kgSaleh
4
70 kgKuboki
5
68 kgSimion
6
79 kgCuley
7
69 kgDavids
12
72 kgPelucchi
13
74 kgQuick
14
77 kgJulius
15
59 kgBogdanovičs
17
68 kgBenfatto
18
71 kgCherkasov
19
68 kgSaleh
20
58 kgStash
21
77 kgIribe
27
61 kgDonohoe
28
62 kgBisolti
29
58 kgRaileanu
30
63 kgReguigui
31
69 kgChrétien
33
65 kgZulkifli
34
65 kg
Weight (KG) →
Result →
82
58
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | MCCABE Travis | 72 |
2 | FREIBERG Michael | 82 |
3 | GUARDINI Andrea | 66 |
4 | SALEH Mohd Harrif | 70 |
5 | KUBOKI Kazushige | 68 |
6 | SIMION Paolo | 79 |
7 | CULEY Marcus | 69 |
12 | DAVIDS Brendon | 72 |
13 | PELUCCHI Matteo | 74 |
14 | QUICK Blake | 77 |
15 | JULIUS Jayde | 59 |
17 | BOGDANOVIČS Māris | 68 |
18 | BENFATTO Marco | 71 |
19 | CHERKASOV Nikolay | 68 |
20 | SALEH Mohd Zamri | 58 |
21 | STASH Mamyr | 77 |
27 | IRIBE Shotaro | 61 |
28 | DONOHOE Alistair | 62 |
29 | BISOLTI Alessandro | 58 |
30 | RAILEANU Cristian | 63 |
31 | REGUIGUI Youcef | 69 |
33 | CHRÉTIEN Charles-Étienne | 65 |
34 | ZULKIFLI Nik Mohamad Azman | 65 |