Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Syritsa
1
85 kgBlikra
2
75 kgKanter
4
68 kgJanse van Rensburg
5
74 kgMareczko
6
67 kgvan den Berg
7
73 kgTaminiaux
8
74 kgSainbayar
9
60 kgChawchiangkwang
10
64 kgPeñalver
11
67 kgGibbons
14
70 kgGrosu
15
68 kgZulkifli
18
65 kgTræen
19
63 kgMolenaar
20
63 kgSirironnachai
21
61 kgMohd Zariff
22
63 kgMolano
25
72 kg
1
85 kgBlikra
2
75 kgKanter
4
68 kgJanse van Rensburg
5
74 kgMareczko
6
67 kgvan den Berg
7
73 kgTaminiaux
8
74 kgSainbayar
9
60 kgChawchiangkwang
10
64 kgPeñalver
11
67 kgGibbons
14
70 kgGrosu
15
68 kgZulkifli
18
65 kgTræen
19
63 kgMolenaar
20
63 kgSirironnachai
21
61 kgMohd Zariff
22
63 kgMolano
25
72 kg
Weight (KG) →
Result →
85
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SYRITSA Gleb | 85 |
2 | BLIKRA Erlend | 75 |
4 | KANTER Max | 68 |
5 | JANSE VAN RENSBURG Reinardt | 74 |
6 | MARECZKO Jakub | 67 |
7 | VAN DEN BERG Marijn | 73 |
8 | TAMINIAUX Lionel | 74 |
9 | SAINBAYAR Jambaljamts | 60 |
10 | CHAWCHIANGKWANG Peerapol | 64 |
11 | PEÑALVER Manuel | 67 |
14 | GIBBONS Ryan | 70 |
15 | GROSU Eduard-Michael | 68 |
18 | ZULKIFLI Nik Mohamad Azman | 65 |
19 | TRÆEN Torstein | 63 |
20 | MOLENAAR Alex | 63 |
21 | SIRIRONNACHAI Sarawut | 61 |
22 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
25 | MOLANO Juan Sebastián | 72 |