Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Malucelli
1
68 kgBlikra
2
75 kgPeñalver
3
67 kgde Kleijn
4
68 kgZanoncello
5
64 kgKristoff
6
78 kgBrustenga
8
80 kgGate
9
71 kgKmínek
10
75 kgManzin
11
69 kgFernández
14
78 kgFortin
15
78 kgCobo
16
64 kgHamdan
17
66 kgChaiyasombat
18
58 kgPronskiy
20
58 kgSaleh
26
70 kgAlleno
27
69 kgEddy
28
79 kgLienhard
29
73 kg
1
68 kgBlikra
2
75 kgPeñalver
3
67 kgde Kleijn
4
68 kgZanoncello
5
64 kgKristoff
6
78 kgBrustenga
8
80 kgGate
9
71 kgKmínek
10
75 kgManzin
11
69 kgFernández
14
78 kgFortin
15
78 kgCobo
16
64 kgHamdan
17
66 kgChaiyasombat
18
58 kgPronskiy
20
58 kgSaleh
26
70 kgAlleno
27
69 kgEddy
28
79 kgLienhard
29
73 kg
Weight (KG) →
Result →
80
58
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | MALUCELLI Matteo | 68 |
2 | BLIKRA Erlend | 75 |
3 | PEÑALVER Manuel | 67 |
4 | DE KLEIJN Arvid | 68 |
5 | ZANONCELLO Enrico | 64 |
6 | KRISTOFF Alexander | 78 |
8 | BRUSTENGA Marc | 80 |
9 | GATE Aaron | 71 |
10 | KMÍNEK Vojtěch | 75 |
11 | MANZIN Lorrenzo | 69 |
14 | FERNÁNDEZ Miguel Ángel | 78 |
15 | FORTIN Filippo | 78 |
16 | COBO Iván | 64 |
17 | HAMDAN Wan Abdul Rahman | 66 |
18 | CHAIYASOMBAT Thanakhan | 58 |
20 | PRONSKIY Vadim | 58 |
26 | SALEH Mohd Harrif | 70 |
27 | ALLENO Clément | 69 |
28 | EDDY Patrick | 79 |
29 | LIENHARD Fabian | 73 |