Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Kadri
1
66 kgKochetkov
7
70 kgRaimbekov
10
66 kgRolland
11
70 kgRoux
12
73 kgWyss
20
63 kgde Baat
22
66 kgBiesek
27
66 kgFrank
34
64 kgKireyev
35
66 kgOvechkin
38
61 kgJanse van Rensburg
42
63 kgBeyer
44
63 kgMartin
49
59 kgDrucker
62
75 kgGruzdev
66
78 kgStannard
68
83 kgCasimiro
70
62 kgTleubayev
97
70 kg
1
66 kgKochetkov
7
70 kgRaimbekov
10
66 kgRolland
11
70 kgRoux
12
73 kgWyss
20
63 kgde Baat
22
66 kgBiesek
27
66 kgFrank
34
64 kgKireyev
35
66 kgOvechkin
38
61 kgJanse van Rensburg
42
63 kgBeyer
44
63 kgMartin
49
59 kgDrucker
62
75 kgGruzdev
66
78 kgStannard
68
83 kgCasimiro
70
62 kgTleubayev
97
70 kg
Weight (KG) →
Result →
83
59
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | KADRI Blel | 66 |
7 | KOCHETKOV Pavel | 70 |
10 | RAIMBEKOV Bolat | 66 |
11 | ROLLAND Pierre | 70 |
12 | ROUX Anthony | 73 |
20 | WYSS Marcel | 63 |
22 | DE BAAT Arjen | 66 |
27 | BIESEK Szymon | 66 |
34 | FRANK Mathias | 64 |
35 | KIREYEV Roman | 66 |
38 | OVECHKIN Artem | 61 |
42 | JANSE VAN RENSBURG Jacques | 63 |
44 | BEYER Chad | 63 |
49 | MARTIN Dan | 59 |
62 | DRUCKER Jempy | 75 |
66 | GRUZDEV Dmitriy | 78 |
68 | STANNARD Ian | 83 |
70 | CASIMIRO Henrique | 62 |
97 | TLEUBAYEV Ruslan | 70 |