Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 81
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Raimbekov
1
66 kgBiesek
5
66 kgKadri
7
66 kgFrank
9
64 kgKochetkov
14
70 kgKireyev
16
66 kgRolland
18
70 kgStannard
33
83 kgde Baat
41
66 kgJanse van Rensburg
42
63 kgDrucker
60
75 kgOvechkin
67
61 kgCasimiro
78
62 kgBeyer
80
63 kgRoux
81
73 kgTleubayev
83
70 kgMartin
85
59 kgGruzdev
88
78 kgWyss
89
63 kgMestre
121
65 kg
1
66 kgBiesek
5
66 kgKadri
7
66 kgFrank
9
64 kgKochetkov
14
70 kgKireyev
16
66 kgRolland
18
70 kgStannard
33
83 kgde Baat
41
66 kgJanse van Rensburg
42
63 kgDrucker
60
75 kgOvechkin
67
61 kgCasimiro
78
62 kgBeyer
80
63 kgRoux
81
73 kgTleubayev
83
70 kgMartin
85
59 kgGruzdev
88
78 kgWyss
89
63 kgMestre
121
65 kg
Weight (KG) →
Result →
83
59
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | RAIMBEKOV Bolat | 66 |
5 | BIESEK Szymon | 66 |
7 | KADRI Blel | 66 |
9 | FRANK Mathias | 64 |
14 | KOCHETKOV Pavel | 70 |
16 | KIREYEV Roman | 66 |
18 | ROLLAND Pierre | 70 |
33 | STANNARD Ian | 83 |
41 | DE BAAT Arjen | 66 |
42 | JANSE VAN RENSBURG Jacques | 63 |
60 | DRUCKER Jempy | 75 |
67 | OVECHKIN Artem | 61 |
78 | CASIMIRO Henrique | 62 |
80 | BEYER Chad | 63 |
81 | ROUX Anthony | 73 |
83 | TLEUBAYEV Ruslan | 70 |
85 | MARTIN Dan | 59 |
88 | GRUZDEV Dmitriy | 78 |
89 | WYSS Marcel | 63 |
121 | MESTRE Daniel | 65 |