Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 129
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Drucker
4
75 kgRolland
6
70 kgBiesek
13
66 kgKireyev
23
66 kgde Baat
26
66 kgKochetkov
27
70 kgRoux
28
73 kgWyss
36
63 kgBeyer
39
63 kgMartin
45
59 kgRaimbekov
49
66 kgTleubayev
53
70 kgGruzdev
58
78 kgStannard
69
83 kgJanse van Rensburg
78
63 kgFrank
79
64 kgKadri
86
66 kgOvechkin
92
61 kgCasimiro
106
62 kg
4
75 kgRolland
6
70 kgBiesek
13
66 kgKireyev
23
66 kgde Baat
26
66 kgKochetkov
27
70 kgRoux
28
73 kgWyss
36
63 kgBeyer
39
63 kgMartin
45
59 kgRaimbekov
49
66 kgTleubayev
53
70 kgGruzdev
58
78 kgStannard
69
83 kgJanse van Rensburg
78
63 kgFrank
79
64 kgKadri
86
66 kgOvechkin
92
61 kgCasimiro
106
62 kg
Weight (KG) →
Result →
83
59
4
106
# | Rider | Weight (KG) |
---|---|---|
4 | DRUCKER Jempy | 75 |
6 | ROLLAND Pierre | 70 |
13 | BIESEK Szymon | 66 |
23 | KIREYEV Roman | 66 |
26 | DE BAAT Arjen | 66 |
27 | KOCHETKOV Pavel | 70 |
28 | ROUX Anthony | 73 |
36 | WYSS Marcel | 63 |
39 | BEYER Chad | 63 |
45 | MARTIN Dan | 59 |
49 | RAIMBEKOV Bolat | 66 |
53 | TLEUBAYEV Ruslan | 70 |
58 | GRUZDEV Dmitriy | 78 |
69 | STANNARD Ian | 83 |
78 | JANSE VAN RENSBURG Jacques | 63 |
79 | FRANK Mathias | 64 |
86 | KADRI Blel | 66 |
92 | OVECHKIN Artem | 61 |
106 | CASIMIRO Henrique | 62 |