Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Ovechkin
1
61 kgKadri
3
66 kgKochetkov
8
70 kgRaimbekov
11
66 kgRolland
12
70 kgRoux
13
73 kgWyss
22
63 kgde Baat
24
66 kgDrucker
28
75 kgJanse van Rensburg
32
63 kgBiesek
37
66 kgMartin
41
59 kgKireyev
45
66 kgFrank
48
64 kgBeyer
61
63 kgGruzdev
63
78 kgStannard
75
83 kgCasimiro
108
62 kgTleubayev
118
70 kg
1
61 kgKadri
3
66 kgKochetkov
8
70 kgRaimbekov
11
66 kgRolland
12
70 kgRoux
13
73 kgWyss
22
63 kgde Baat
24
66 kgDrucker
28
75 kgJanse van Rensburg
32
63 kgBiesek
37
66 kgMartin
41
59 kgKireyev
45
66 kgFrank
48
64 kgBeyer
61
63 kgGruzdev
63
78 kgStannard
75
83 kgCasimiro
108
62 kgTleubayev
118
70 kg
Weight (KG) →
Result →
83
59
1
118
# | Rider | Weight (KG) |
---|---|---|
1 | OVECHKIN Artem | 61 |
3 | KADRI Blel | 66 |
8 | KOCHETKOV Pavel | 70 |
11 | RAIMBEKOV Bolat | 66 |
12 | ROLLAND Pierre | 70 |
13 | ROUX Anthony | 73 |
22 | WYSS Marcel | 63 |
24 | DE BAAT Arjen | 66 |
28 | DRUCKER Jempy | 75 |
32 | JANSE VAN RENSBURG Jacques | 63 |
37 | BIESEK Szymon | 66 |
41 | MARTIN Dan | 59 |
45 | KIREYEV Roman | 66 |
48 | FRANK Mathias | 64 |
61 | BEYER Chad | 63 |
63 | GRUZDEV Dmitriy | 78 |
75 | STANNARD Ian | 83 |
108 | CASIMIRO Henrique | 62 |
118 | TLEUBAYEV Ruslan | 70 |