Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 98
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
de Baat
1
66 kgRaimbekov
4
66 kgKireyev
9
66 kgTleubayev
11
70 kgBiesek
14
66 kgRoux
15
73 kgKadri
23
66 kgJanse van Rensburg
24
63 kgMartin
32
59 kgRolland
38
70 kgWyss
40
63 kgBeyer
43
63 kgKochetkov
46
70 kgFrank
51
64 kgCasimiro
59
62 kgOvechkin
68
61 kgGruzdev
83
78 kgStannard
87
83 kgDrucker
91
75 kg
1
66 kgRaimbekov
4
66 kgKireyev
9
66 kgTleubayev
11
70 kgBiesek
14
66 kgRoux
15
73 kgKadri
23
66 kgJanse van Rensburg
24
63 kgMartin
32
59 kgRolland
38
70 kgWyss
40
63 kgBeyer
43
63 kgKochetkov
46
70 kgFrank
51
64 kgCasimiro
59
62 kgOvechkin
68
61 kgGruzdev
83
78 kgStannard
87
83 kgDrucker
91
75 kg
Weight (KG) →
Result →
83
59
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | DE BAAT Arjen | 66 |
4 | RAIMBEKOV Bolat | 66 |
9 | KIREYEV Roman | 66 |
11 | TLEUBAYEV Ruslan | 70 |
14 | BIESEK Szymon | 66 |
15 | ROUX Anthony | 73 |
23 | KADRI Blel | 66 |
24 | JANSE VAN RENSBURG Jacques | 63 |
32 | MARTIN Dan | 59 |
38 | ROLLAND Pierre | 70 |
40 | WYSS Marcel | 63 |
43 | BEYER Chad | 63 |
46 | KOCHETKOV Pavel | 70 |
51 | FRANK Mathias | 64 |
59 | CASIMIRO Henrique | 62 |
68 | OVECHKIN Artem | 61 |
83 | GRUZDEV Dmitriy | 78 |
87 | STANNARD Ian | 83 |
91 | DRUCKER Jempy | 75 |