Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 113
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Kochetkov
8
70 kgRoux
12
73 kgBiesek
14
66 kgRaimbekov
15
66 kgKireyev
16
66 kgStannard
19
83 kgBeyer
24
63 kgde Baat
27
66 kgTleubayev
28
70 kgWyss
29
63 kgKadri
31
66 kgCasimiro
33
62 kgDrucker
38
75 kgFrank
49
64 kgRolland
51
70 kgGruzdev
62
78 kgOvechkin
69
61 kgMartin
80
59 kgJanse van Rensburg
81
63 kg
8
70 kgRoux
12
73 kgBiesek
14
66 kgRaimbekov
15
66 kgKireyev
16
66 kgStannard
19
83 kgBeyer
24
63 kgde Baat
27
66 kgTleubayev
28
70 kgWyss
29
63 kgKadri
31
66 kgCasimiro
33
62 kgDrucker
38
75 kgFrank
49
64 kgRolland
51
70 kgGruzdev
62
78 kgOvechkin
69
61 kgMartin
80
59 kgJanse van Rensburg
81
63 kg
Weight (KG) →
Result →
83
59
8
81
# | Rider | Weight (KG) |
---|---|---|
8 | KOCHETKOV Pavel | 70 |
12 | ROUX Anthony | 73 |
14 | BIESEK Szymon | 66 |
15 | RAIMBEKOV Bolat | 66 |
16 | KIREYEV Roman | 66 |
19 | STANNARD Ian | 83 |
24 | BEYER Chad | 63 |
27 | DE BAAT Arjen | 66 |
28 | TLEUBAYEV Ruslan | 70 |
29 | WYSS Marcel | 63 |
31 | KADRI Blel | 66 |
33 | CASIMIRO Henrique | 62 |
38 | DRUCKER Jempy | 75 |
49 | FRANK Mathias | 64 |
51 | ROLLAND Pierre | 70 |
62 | GRUZDEV Dmitriy | 78 |
69 | OVECHKIN Artem | 61 |
80 | MARTIN Dan | 59 |
81 | JANSE VAN RENSBURG Jacques | 63 |