Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 181
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Kittel
1
82 kgvan Garderen
3
72 kgJarc
5
87 kgGallopin
8
69 kgPapok
9
76 kgvan Zandbeek
14
72 kgGuldhammer
18
66 kgBol
19
71 kgSaggiorato
25
58 kgSagan
28
65 kgKump
34
68 kgKreder
35
70 kgČanecký
38
72 kgLourenço
45
62 kgCharucki
46
64 kgJaniszewski
56
65 kgMahďar
58
61 kgHesselbarth
76
65 kgZangerle
83
63 kg
1
82 kgvan Garderen
3
72 kgJarc
5
87 kgGallopin
8
69 kgPapok
9
76 kgvan Zandbeek
14
72 kgGuldhammer
18
66 kgBol
19
71 kgSaggiorato
25
58 kgSagan
28
65 kgKump
34
68 kgKreder
35
70 kgČanecký
38
72 kgLourenço
45
62 kgCharucki
46
64 kgJaniszewski
56
65 kgMahďar
58
61 kgHesselbarth
76
65 kgZangerle
83
63 kg
Weight (KG) →
Result →
87
58
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
3 | VAN GARDEREN Tejay | 72 |
5 | JARC Blaž | 87 |
8 | GALLOPIN Tony | 69 |
9 | PAPOK Siarhei | 76 |
14 | VAN ZANDBEEK Ronan | 72 |
18 | GULDHAMMER Rasmus | 66 |
19 | BOL Jetse | 71 |
25 | SAGGIORATO Mirco | 58 |
28 | SAGAN Juraj | 65 |
34 | KUMP Marko | 68 |
35 | KREDER Raymond | 70 |
38 | ČANECKÝ Marek | 72 |
45 | LOURENÇO Guilherme | 62 |
46 | CHARUCKI Paweł | 64 |
56 | JANISZEWSKI Sylwester | 65 |
58 | MAHĎAR Martin | 61 |
76 | HESSELBARTH David | 65 |
83 | ZANGERLE Joel | 63 |