Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.9 * weight + 175
This means that on average for every extra kilogram weight a rider loses -1.9 positions in the result.
Kump
3
68 kgPapok
5
76 kgKittel
6
82 kgSagan
7
65 kgvan Garderen
12
72 kgGallopin
16
69 kgBär
19
66 kgJarc
25
87 kgJaniszewski
26
65 kgHesselbarth
39
65 kgPaiani
47
77 kgKreder
55
70 kgvan Zandbeek
56
72 kgGuldhammer
63
66 kgMahďar
66
61 kgPagani
70
68 kgBol
71
71 kgZangerle
79
63 kgCharucki
88
64 kgČanecký
91
72 kgLourenço
95
62 kg
3
68 kgPapok
5
76 kgKittel
6
82 kgSagan
7
65 kgvan Garderen
12
72 kgGallopin
16
69 kgBär
19
66 kgJarc
25
87 kgJaniszewski
26
65 kgHesselbarth
39
65 kgPaiani
47
77 kgKreder
55
70 kgvan Zandbeek
56
72 kgGuldhammer
63
66 kgMahďar
66
61 kgPagani
70
68 kgBol
71
71 kgZangerle
79
63 kgCharucki
88
64 kgČanecký
91
72 kgLourenço
95
62 kg
Weight (KG) →
Result →
87
61
3
95
# | Rider | Weight (KG) |
---|---|---|
3 | KUMP Marko | 68 |
5 | PAPOK Siarhei | 76 |
6 | KITTEL Marcel | 82 |
7 | SAGAN Juraj | 65 |
12 | VAN GARDEREN Tejay | 72 |
16 | GALLOPIN Tony | 69 |
19 | BÄR Michael | 66 |
25 | JARC Blaž | 87 |
26 | JANISZEWSKI Sylwester | 65 |
39 | HESSELBARTH David | 65 |
47 | PAIANI Jean-Lou | 77 |
55 | KREDER Raymond | 70 |
56 | VAN ZANDBEEK Ronan | 72 |
63 | GULDHAMMER Rasmus | 66 |
66 | MAHĎAR Martin | 61 |
70 | PAGANI Angelo | 68 |
71 | BOL Jetse | 71 |
79 | ZANGERLE Joel | 63 |
88 | CHARUCKI Paweł | 64 |
91 | ČANECKÝ Marek | 72 |
95 | LOURENÇO Guilherme | 62 |