Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.2 * weight + 183
This means that on average for every extra kilogram weight a rider loses -2.2 positions in the result.
Bär
1
66 kgSagan
4
65 kgGallopin
7
69 kgHesselbarth
8
65 kgPapok
9
76 kgKump
11
68 kgJarc
12
87 kgKreder
14
70 kgKittel
16
82 kgvan Garderen
18
72 kgvan Zandbeek
20
72 kgPaiani
23
77 kgBol
30
71 kgČanecký
32
72 kgSaggiorato
35
58 kgPagani
37
68 kgGuldhammer
46
66 kgLourenço
59
62 kgJaniszewski
72
65 kgMahďar
83
61 kgCharucki
95
64 kgZangerle
104
63 kg
1
66 kgSagan
4
65 kgGallopin
7
69 kgHesselbarth
8
65 kgPapok
9
76 kgKump
11
68 kgJarc
12
87 kgKreder
14
70 kgKittel
16
82 kgvan Garderen
18
72 kgvan Zandbeek
20
72 kgPaiani
23
77 kgBol
30
71 kgČanecký
32
72 kgSaggiorato
35
58 kgPagani
37
68 kgGuldhammer
46
66 kgLourenço
59
62 kgJaniszewski
72
65 kgMahďar
83
61 kgCharucki
95
64 kgZangerle
104
63 kg
Weight (KG) →
Result →
87
58
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | BÄR Michael | 66 |
4 | SAGAN Juraj | 65 |
7 | GALLOPIN Tony | 69 |
8 | HESSELBARTH David | 65 |
9 | PAPOK Siarhei | 76 |
11 | KUMP Marko | 68 |
12 | JARC Blaž | 87 |
14 | KREDER Raymond | 70 |
16 | KITTEL Marcel | 82 |
18 | VAN GARDEREN Tejay | 72 |
20 | VAN ZANDBEEK Ronan | 72 |
23 | PAIANI Jean-Lou | 77 |
30 | BOL Jetse | 71 |
32 | ČANECKÝ Marek | 72 |
35 | SAGGIORATO Mirco | 58 |
37 | PAGANI Angelo | 68 |
46 | GULDHAMMER Rasmus | 66 |
59 | LOURENÇO Guilherme | 62 |
72 | JANISZEWSKI Sylwester | 65 |
83 | MAHĎAR Martin | 61 |
95 | CHARUCKI Paweł | 64 |
104 | ZANGERLE Joel | 63 |