Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.3 * weight + 196
This means that on average for every extra kilogram weight a rider loses -2.3 positions in the result.
Kittel
1
82 kgJarc
2
87 kgGallopin
3
69 kgvan Garderen
4
72 kgPagani
11
68 kgPapok
12
76 kgvan Zandbeek
15
72 kgBär
20
66 kgGuldhammer
23
66 kgBol
24
71 kgCharucki
27
64 kgSaggiorato
34
58 kgPaiani
44
77 kgHesselbarth
52
65 kgLourenço
54
62 kgKreder
66
70 kgZangerle
73
63 kgSagan
74
65 kgČanecký
77
72 kgKump
82
68 kgJaniszewski
87
65 kgMahďar
89
61 kg
1
82 kgJarc
2
87 kgGallopin
3
69 kgvan Garderen
4
72 kgPagani
11
68 kgPapok
12
76 kgvan Zandbeek
15
72 kgBär
20
66 kgGuldhammer
23
66 kgBol
24
71 kgCharucki
27
64 kgSaggiorato
34
58 kgPaiani
44
77 kgHesselbarth
52
65 kgLourenço
54
62 kgKreder
66
70 kgZangerle
73
63 kgSagan
74
65 kgČanecký
77
72 kgKump
82
68 kgJaniszewski
87
65 kgMahďar
89
61 kg
Weight (KG) →
Result →
87
58
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | KITTEL Marcel | 82 |
2 | JARC Blaž | 87 |
3 | GALLOPIN Tony | 69 |
4 | VAN GARDEREN Tejay | 72 |
11 | PAGANI Angelo | 68 |
12 | PAPOK Siarhei | 76 |
15 | VAN ZANDBEEK Ronan | 72 |
20 | BÄR Michael | 66 |
23 | GULDHAMMER Rasmus | 66 |
24 | BOL Jetse | 71 |
27 | CHARUCKI Paweł | 64 |
34 | SAGGIORATO Mirco | 58 |
44 | PAIANI Jean-Lou | 77 |
52 | HESSELBARTH David | 65 |
54 | LOURENÇO Guilherme | 62 |
66 | KREDER Raymond | 70 |
73 | ZANGERLE Joel | 63 |
74 | SAGAN Juraj | 65 |
77 | ČANECKÝ Marek | 72 |
82 | KUMP Marko | 68 |
87 | JANISZEWSKI Sylwester | 65 |
89 | MAHĎAR Martin | 61 |