Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 121
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Papok
4
76 kgKump
5
68 kgJarc
9
87 kgKreder
10
70 kgGallopin
11
69 kgSagan
12
65 kgBol
19
71 kgKittel
26
82 kgSaggiorato
27
58 kgČanecký
30
72 kgGuldhammer
41
66 kgvan Zandbeek
43
72 kgvan Garderen
47
72 kgLourenço
49
62 kgJaniszewski
51
65 kgZangerle
52
63 kgMahďar
56
61 kgCharucki
62
64 kgPaiani
95
77 kgBär
99
66 kgHesselbarth
100
65 kg
4
76 kgKump
5
68 kgJarc
9
87 kgKreder
10
70 kgGallopin
11
69 kgSagan
12
65 kgBol
19
71 kgKittel
26
82 kgSaggiorato
27
58 kgČanecký
30
72 kgGuldhammer
41
66 kgvan Zandbeek
43
72 kgvan Garderen
47
72 kgLourenço
49
62 kgJaniszewski
51
65 kgZangerle
52
63 kgMahďar
56
61 kgCharucki
62
64 kgPaiani
95
77 kgBär
99
66 kgHesselbarth
100
65 kg
Weight (KG) →
Result →
87
58
4
100
# | Rider | Weight (KG) |
---|---|---|
4 | PAPOK Siarhei | 76 |
5 | KUMP Marko | 68 |
9 | JARC Blaž | 87 |
10 | KREDER Raymond | 70 |
11 | GALLOPIN Tony | 69 |
12 | SAGAN Juraj | 65 |
19 | BOL Jetse | 71 |
26 | KITTEL Marcel | 82 |
27 | SAGGIORATO Mirco | 58 |
30 | ČANECKÝ Marek | 72 |
41 | GULDHAMMER Rasmus | 66 |
43 | VAN ZANDBEEK Ronan | 72 |
47 | VAN GARDEREN Tejay | 72 |
49 | LOURENÇO Guilherme | 62 |
51 | JANISZEWSKI Sylwester | 65 |
52 | ZANGERLE Joel | 63 |
56 | MAHĎAR Martin | 61 |
62 | CHARUCKI Paweł | 64 |
95 | PAIANI Jean-Lou | 77 |
99 | BÄR Michael | 66 |
100 | HESSELBARTH David | 65 |