Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 101
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
van der Poel
3
70 kgLilholt
4
72 kgBomans
6
74 kgSkibby
7
70 kgWauters
8
73 kgElli
12
71 kgWalton
16
68 kgVerstrepen
20
66 kgPieters
26
82 kgVanderaerden
27
74 kgHolm Sørensen
33
77 kgWabel
38
72 kgFarazijn
39
69 kgAndreu
44
77 kgPeeters
45
76 kgHoste
47
76 kgDemol
57
72 kgLeysen
61
75 kg
3
70 kgLilholt
4
72 kgBomans
6
74 kgSkibby
7
70 kgWauters
8
73 kgElli
12
71 kgWalton
16
68 kgVerstrepen
20
66 kgPieters
26
82 kgVanderaerden
27
74 kgHolm Sørensen
33
77 kgWabel
38
72 kgFarazijn
39
69 kgAndreu
44
77 kgPeeters
45
76 kgHoste
47
76 kgDemol
57
72 kgLeysen
61
75 kg
Weight (KG) →
Result →
82
66
3
61
# | Rider | Weight (KG) |
---|---|---|
3 | VAN DER POEL Adrie | 70 |
4 | LILHOLT Søren | 72 |
6 | BOMANS Carlo | 74 |
7 | SKIBBY Jesper | 70 |
8 | WAUTERS Marc | 73 |
12 | ELLI Alberto | 71 |
16 | WALTON Brian | 68 |
20 | VERSTREPEN Johan | 66 |
26 | PIETERS Peter | 82 |
27 | VANDERAERDEN Eric | 74 |
33 | HOLM SØRENSEN Brian | 77 |
38 | WABEL Beat | 72 |
39 | FARAZIJN Peter | 69 |
44 | ANDREU Frankie | 77 |
45 | PEETERS Wilfried | 76 |
47 | HOSTE Frank | 76 |
57 | DEMOL Dirk | 72 |
61 | LEYSEN Bart | 75 |