Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -15.5 * weight + 1861
This means that on average for every extra kilogram weight a rider loses -15.5 positions in the result.
Sciandri
3
75 kgMuseeuw
5
71 kgStrazzer
8
68 kgCorvers
9
77 kgElli
990
71 kgNijdam
990
70 kgden Bakker
990
71 kgWauters
990
73 kgHolm Sørensen
990
77 kgBallerini
990
78 kgFarazijn
990
69 kgRichard
990
67 kgYates
990
74 kgZabel
990
69 kgJärmann
990
73 kgWesemann
990
72 kgMaya
990
58 kg
3
75 kgMuseeuw
5
71 kgStrazzer
8
68 kgCorvers
9
77 kgElli
990
71 kgNijdam
990
70 kgden Bakker
990
71 kgWauters
990
73 kgHolm Sørensen
990
77 kgBallerini
990
78 kgFarazijn
990
69 kgRichard
990
67 kgYates
990
74 kgZabel
990
69 kgJärmann
990
73 kgWesemann
990
72 kgMaya
990
58 kg
Weight (KG) →
Result →
78
58
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | SCIANDRI Maximilian | 75 |
5 | MUSEEUW Johan | 71 |
8 | STRAZZER Massimo | 68 |
9 | CORVERS Frank | 77 |
990 | ELLI Alberto | 71 |
990 | NIJDAM Jelle | 70 |
990 | DEN BAKKER Maarten | 71 |
990 | WAUTERS Marc | 73 |
990 | HOLM SØRENSEN Brian | 77 |
990 | BALLERINI Franco | 78 |
990 | FARAZIJN Peter | 69 |
990 | RICHARD Pascal | 67 |
990 | YATES Sean | 74 |
990 | ZABEL Erik | 69 |
990 | JÄRMANN Rolf | 73 |
990 | WESEMANN Steffen | 72 |
990 | MAYA Carlos Alberto | 58 |