Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Hincapie
2
83 kgMauri
3
68 kgKasputis
4
83 kgJärmann
5
73 kgGarmendia
6
68 kgDekker
7
66 kgAldag
8
75 kgCasero
10
72 kgVandenbroucke
11
67 kgTchmil
12
75 kgAndreu
13
77 kgNardello
18
74 kgNevens
19
58 kgElli
20
71 kgGianetti
21
62 kgVan Hyfte
24
70 kgEkimov
32
69 kgden Bakker
35
71 kgDietz
40
69 kgZabel
41
69 kgDe Clercq
45
66 kg
2
83 kgMauri
3
68 kgKasputis
4
83 kgJärmann
5
73 kgGarmendia
6
68 kgDekker
7
66 kgAldag
8
75 kgCasero
10
72 kgVandenbroucke
11
67 kgTchmil
12
75 kgAndreu
13
77 kgNardello
18
74 kgNevens
19
58 kgElli
20
71 kgGianetti
21
62 kgVan Hyfte
24
70 kgEkimov
32
69 kgden Bakker
35
71 kgDietz
40
69 kgZabel
41
69 kgDe Clercq
45
66 kg
Weight (KG) →
Result →
83
58
2
45
# | Rider | Weight (KG) |
---|---|---|
2 | HINCAPIE George | 83 |
3 | MAURI Melchor | 68 |
4 | KASPUTIS Artūras | 83 |
5 | JÄRMANN Rolf | 73 |
6 | GARMENDIA Aitor | 68 |
7 | DEKKER Erik | 66 |
8 | ALDAG Rolf | 75 |
10 | CASERO Ángel Luis | 72 |
11 | VANDENBROUCKE Frank | 67 |
12 | TCHMIL Andrei | 75 |
13 | ANDREU Frankie | 77 |
18 | NARDELLO Daniele | 74 |
19 | NEVENS Jan | 58 |
20 | ELLI Alberto | 71 |
21 | GIANETTI Mauro | 62 |
24 | VAN HYFTE Paul | 70 |
32 | EKIMOV Viatcheslav | 69 |
35 | DEN BAKKER Maarten | 71 |
40 | DIETZ Bert | 69 |
41 | ZABEL Erik | 69 |
45 | DE CLERCQ Mario | 66 |