Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Tsubaki
1
62 kgNovardianto
2
69 kgMohd Zariff
6
63 kgVolkers
7
67 kgMat Amin
11
54 kgKurniawan
17
55 kgCahyadi
18
52 kgZakaria
19
59 kgAzman
20
57 kgCrawford
25
59 kgCuley
26
69 kgLebas
30
65 kgNieto
35
58 kgHibatulah
36
55 kgManulang
37
59 kgAbdurrahman
41
56 kgGarcía
42
68 kgFikri Azka
45
54 kgMisbah
49
56 kgAso
51
67 kgFelipe
53
58 kg
1
62 kgNovardianto
2
69 kgMohd Zariff
6
63 kgVolkers
7
67 kgMat Amin
11
54 kgKurniawan
17
55 kgCahyadi
18
52 kgZakaria
19
59 kgAzman
20
57 kgCrawford
25
59 kgCuley
26
69 kgLebas
30
65 kgNieto
35
58 kgHibatulah
36
55 kgManulang
37
59 kgAbdurrahman
41
56 kgGarcía
42
68 kgFikri Azka
45
54 kgMisbah
49
56 kgAso
51
67 kgFelipe
53
58 kg
Weight (KG) →
Result →
69
52
1
53
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | TSUBAKI Hiroshi | 62 |
| 2 | NOVARDIANTO Jamalidin | 69 |
| 6 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
| 7 | VOLKERS Samuel | 67 |
| 11 | MAT AMIN Mohd Shahrul | 54 |
| 17 | KURNIAWAN Maulana Fahrizal | 55 |
| 18 | CAHYADI Aiman | 52 |
| 19 | ZAKARIA Akmal Hakim | 59 |
| 20 | AZMAN Muhamad Zawawi | 57 |
| 25 | CRAWFORD Jai | 59 |
| 26 | CULEY Marcus | 69 |
| 30 | LEBAS Thomas | 65 |
| 35 | NIETO Edgar | 58 |
| 36 | HIBATULAH Jamal | 55 |
| 37 | MANULANG Robin | 59 |
| 41 | ABDURRAHMAN Muhammad | 56 |
| 42 | GARCÍA Ricardo | 68 |
| 45 | FIKRI AZKA Mohammad | 54 |
| 49 | MISBAH Muhsin Al Redha | 56 |
| 51 | ASO Keisuke | 67 |
| 53 | FELIPE Marcelo | 58 |