Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgLjungqvist
2
73 kgMorin
4
79 kgArvesen
7
74 kgRadochla
10
70 kgKlimov
11
69 kgPencolé
12
74 kgHervé
13
60 kgClerc
16
71 kgEdaleine
18
62 kgJohansen
20
78 kgCharteau
23
67 kgBrutt
24
70 kgLiese
25
75 kgHinault
35
63 kgLaurent
37
72 kgZamana
39
74 kgFédrigo
41
66 kgLupeikis
42
80 kg
1
83 kgLjungqvist
2
73 kgMorin
4
79 kgArvesen
7
74 kgRadochla
10
70 kgKlimov
11
69 kgPencolé
12
74 kgHervé
13
60 kgClerc
16
71 kgEdaleine
18
62 kgJohansen
20
78 kgCharteau
23
67 kgBrutt
24
70 kgLiese
25
75 kgHinault
35
63 kgLaurent
37
72 kgZamana
39
74 kgFédrigo
41
66 kgLupeikis
42
80 kg
Weight (KG) →
Result →
83
60
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | LJUNGQVIST Marcus | 73 |
4 | MORIN Anthony | 79 |
7 | ARVESEN Kurt-Asle | 74 |
10 | RADOCHLA Steffen | 70 |
11 | KLIMOV Sergey | 69 |
12 | PENCOLÉ Franck | 74 |
13 | HERVÉ Cédric | 60 |
16 | CLERC Aurélien | 71 |
18 | EDALEINE Christophe | 62 |
20 | JOHANSEN Allan | 78 |
23 | CHARTEAU Anthony | 67 |
24 | BRUTT Pavel | 70 |
25 | LIESE Thomas | 75 |
35 | HINAULT Sébastien | 63 |
37 | LAURENT Christophe | 72 |
39 | ZAMANA Cezary | 74 |
41 | FÉDRIGO Pierrick | 66 |
42 | LUPEIKIS Remigius | 80 |