Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 134
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Liese
1
75 kgMorin
2
79 kgArvesen
3
74 kgHervé
4
60 kgHushovd
7
83 kgLaurent
8
72 kgRobin
11
63 kgRadochla
12
70 kgHinault
17
63 kgLjungqvist
18
73 kgJohansen
20
78 kgCalzati
21
68 kgLupeikis
23
80 kgZamana
24
74 kgBrutt
29
70 kgPencolé
31
74 kgKlimov
33
69 kgPlouhinec
38
63 kgSerov
41
77 kgFédrigo
45
66 kgJan
53
62 kgClerc
59
71 kgEdaleine
92
62 kgCharteau
94
67 kg
1
75 kgMorin
2
79 kgArvesen
3
74 kgHervé
4
60 kgHushovd
7
83 kgLaurent
8
72 kgRobin
11
63 kgRadochla
12
70 kgHinault
17
63 kgLjungqvist
18
73 kgJohansen
20
78 kgCalzati
21
68 kgLupeikis
23
80 kgZamana
24
74 kgBrutt
29
70 kgPencolé
31
74 kgKlimov
33
69 kgPlouhinec
38
63 kgSerov
41
77 kgFédrigo
45
66 kgJan
53
62 kgClerc
59
71 kgEdaleine
92
62 kgCharteau
94
67 kg
Weight (KG) →
Result →
83
60
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | LIESE Thomas | 75 |
2 | MORIN Anthony | 79 |
3 | ARVESEN Kurt-Asle | 74 |
4 | HERVÉ Cédric | 60 |
7 | HUSHOVD Thor | 83 |
8 | LAURENT Christophe | 72 |
11 | ROBIN Jean-Cyril | 63 |
12 | RADOCHLA Steffen | 70 |
17 | HINAULT Sébastien | 63 |
18 | LJUNGQVIST Marcus | 73 |
20 | JOHANSEN Allan | 78 |
21 | CALZATI Sylvain | 68 |
23 | LUPEIKIS Remigius | 80 |
24 | ZAMANA Cezary | 74 |
29 | BRUTT Pavel | 70 |
31 | PENCOLÉ Franck | 74 |
33 | KLIMOV Sergey | 69 |
38 | PLOUHINEC Samuel | 63 |
41 | SEROV Alexander | 77 |
45 | FÉDRIGO Pierrick | 66 |
53 | JAN Xavier | 62 |
59 | CLERC Aurélien | 71 |
92 | EDALEINE Christophe | 62 |
94 | CHARTEAU Anthony | 67 |