Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Pozzato
1
73 kgGeslin
7
68 kgRogina
10
70 kgLequatre
12
64 kgMuravyev
18
75 kgPineau
28
65 kgMahorič
30
68 kgJørgensen
37
60 kgKristensen
40
70 kgRasch
49
72 kgTalabardon
57
67 kgCoenen
60
67 kgCheula
62
62 kgMainguenaud
66
68 kgLupeikis
69
80 kgGolčer
73
66.5 kgVestøl
75
85 kgPaumier
76
57 kgKaggestad
80
66 kgBonča
84
63 kgCoutouly
93
72 kgPérez
94
76 kg
1
73 kgGeslin
7
68 kgRogina
10
70 kgLequatre
12
64 kgMuravyev
18
75 kgPineau
28
65 kgMahorič
30
68 kgJørgensen
37
60 kgKristensen
40
70 kgRasch
49
72 kgTalabardon
57
67 kgCoenen
60
67 kgCheula
62
62 kgMainguenaud
66
68 kgLupeikis
69
80 kgGolčer
73
66.5 kgVestøl
75
85 kgPaumier
76
57 kgKaggestad
80
66 kgBonča
84
63 kgCoutouly
93
72 kgPérez
94
76 kg
Weight (KG) →
Result →
85
57
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | POZZATO Filippo | 73 |
7 | GESLIN Anthony | 68 |
10 | ROGINA Radoslav | 70 |
12 | LEQUATRE Geoffroy | 64 |
18 | MURAVYEV Dmitriy | 75 |
28 | PINEAU Jérôme | 65 |
30 | MAHORIČ Mitja | 68 |
37 | JØRGENSEN René | 60 |
40 | KRISTENSEN Lennie | 70 |
49 | RASCH Gabriel | 72 |
57 | TALABARDON Yannick | 67 |
60 | COENEN Johan | 67 |
62 | CHEULA Giampaolo | 62 |
66 | MAINGUENAUD Frédéric | 68 |
69 | LUPEIKIS Remigius | 80 |
73 | GOLČER Jure | 66.5 |
75 | VESTØL Bjørnar | 85 |
76 | PAUMIER Laurent | 57 |
80 | KAGGESTAD Mads | 66 |
84 | BONČA Valter | 63 |
93 | COUTOULY Cédric | 72 |
94 | PÉREZ Francisco | 76 |