Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Ravard
1
62 kgKristoff
2
78 kgSchmitz
3
77 kgCaethoven
4
67 kgvan Emden
5
78 kgSaramotins
6
75 kgBonsergent
8
66 kgLodewyck
9
70 kgLelay
11
67 kgHoogerland
12
65 kgVermeltfoort
14
85 kgDelpech
16
72 kgNeirynck
19
78 kgGalland
20
62 kgCoutouly
21
72 kgde Jonge
32
65 kgDe Backer
33
73 kgFeillu
34
69 kgLe Floch
35
67 kgPedersen
36
62 kgBaugnies
37
69 kgMatysiak
41
71 kg
1
62 kgKristoff
2
78 kgSchmitz
3
77 kgCaethoven
4
67 kgvan Emden
5
78 kgSaramotins
6
75 kgBonsergent
8
66 kgLodewyck
9
70 kgLelay
11
67 kgHoogerland
12
65 kgVermeltfoort
14
85 kgDelpech
16
72 kgNeirynck
19
78 kgGalland
20
62 kgCoutouly
21
72 kgde Jonge
32
65 kgDe Backer
33
73 kgFeillu
34
69 kgLe Floch
35
67 kgPedersen
36
62 kgBaugnies
37
69 kgMatysiak
41
71 kg
Weight (KG) →
Result →
85
62
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | RAVARD Anthony | 62 |
2 | KRISTOFF Alexander | 78 |
3 | SCHMITZ Bram | 77 |
4 | CAETHOVEN Steven | 67 |
5 | VAN EMDEN Jos | 78 |
6 | SARAMOTINS Aleksejs | 75 |
8 | BONSERGENT Stéphane | 66 |
9 | LODEWYCK Klaas | 70 |
11 | LELAY David | 67 |
12 | HOOGERLAND Johnny | 65 |
14 | VERMELTFOORT Coen | 85 |
16 | DELPECH Jean-Luc | 72 |
19 | NEIRYNCK Stijn | 78 |
20 | GALLAND Jérémie | 62 |
21 | COUTOULY Cédric | 72 |
32 | DE JONGE Maarten | 65 |
33 | DE BACKER Bert | 73 |
34 | FEILLU Brice | 69 |
35 | LE FLOCH Guillaume | 67 |
36 | PEDERSEN Martin | 62 |
37 | BAUGNIES Jérôme | 69 |
41 | MATYSIAK Bartłomiej | 71 |