Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Gregaard
1
66 kgSchultz
3
68 kgLevasseur
4
74 kgLeplingard
6
68 kgVereecken
8
72 kgPlanckaert
10
65 kgde Greef
12
65 kgStewart
13
71 kgFerasse
14
61 kgOvett
16
64 kgTusveld
17
70 kgCordeel
18
80 kgBoulo
19
62 kgKneisky
21
68 kgBol
22
71 kgVan Zummeren
23
73 kgLaverack
25
62 kgHoelgaard
29
74 kgCalleeuw
30
71 kgTschernoster
32
62 kg
1
66 kgSchultz
3
68 kgLevasseur
4
74 kgLeplingard
6
68 kgVereecken
8
72 kgPlanckaert
10
65 kgde Greef
12
65 kgStewart
13
71 kgFerasse
14
61 kgOvett
16
64 kgTusveld
17
70 kgCordeel
18
80 kgBoulo
19
62 kgKneisky
21
68 kgBol
22
71 kgVan Zummeren
23
73 kgLaverack
25
62 kgHoelgaard
29
74 kgCalleeuw
30
71 kgTschernoster
32
62 kg
Weight (KG) →
Result →
80
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | GREGAARD Jonas | 66 |
3 | SCHULTZ Nick | 68 |
4 | LEVASSEUR Jordan | 74 |
6 | LEPLINGARD Antoine | 68 |
8 | VEREECKEN Nicolas | 72 |
10 | PLANCKAERT Baptiste | 65 |
12 | DE GREEF Robbert | 65 |
13 | STEWART Thomas | 71 |
14 | FERASSE Thibault | 61 |
16 | OVETT Freddy | 64 |
17 | TUSVELD Martijn | 70 |
18 | CORDEEL Sander | 80 |
19 | BOULO Matthieu | 62 |
21 | KNEISKY Morgan | 68 |
22 | BOL Jetse | 71 |
23 | VAN ZUMMEREN Stef | 73 |
25 | LAVERACK Edward | 62 |
29 | HOELGAARD Markus | 74 |
30 | CALLEEUW Joeri | 71 |
32 | TSCHERNOSTER Jan | 62 |