Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Dupont
1
72 kgVermeltfoort
2
85 kgAckermann
3
78 kgBol
5
83 kgDeltombe
8
66 kgAriesen
10
70 kgWestmattelmann
12
75 kgVereecken
14
72 kgFerasse
15
61 kgLeplingard
16
68 kgStewart
18
71 kgJansen
19
83 kgTusveld
20
70 kgKowalski
21
67 kgSchultz
22
68 kgVangstad
24
70 kgMora
25
70 kgHuppertz
27
66 kg
1
72 kgVermeltfoort
2
85 kgAckermann
3
78 kgBol
5
83 kgDeltombe
8
66 kgAriesen
10
70 kgWestmattelmann
12
75 kgVereecken
14
72 kgFerasse
15
61 kgLeplingard
16
68 kgStewart
18
71 kgJansen
19
83 kgTusveld
20
70 kgKowalski
21
67 kgSchultz
22
68 kgVangstad
24
70 kgMora
25
70 kgHuppertz
27
66 kg
Weight (KG) →
Result →
85
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DUPONT Timothy | 72 |
2 | VERMELTFOORT Coen | 85 |
3 | ACKERMANN Pascal | 78 |
5 | BOL Cees | 83 |
8 | DELTOMBE Kevin | 66 |
10 | ARIESEN Tim | 70 |
12 | WESTMATTELMANN Daniel | 75 |
14 | VEREECKEN Nicolas | 72 |
15 | FERASSE Thibault | 61 |
16 | LEPLINGARD Antoine | 68 |
18 | STEWART Thomas | 71 |
19 | JANSEN Amund Grøndahl | 83 |
20 | TUSVELD Martijn | 70 |
21 | KOWALSKI Dylan | 67 |
22 | SCHULTZ Nick | 68 |
24 | VANGSTAD Andreas | 70 |
25 | MORA Sebastián | 70 |
27 | HUPPERTZ Joshua | 66 |