Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Dainese
1
70 kgKrieger
3
71 kgde Kleijn
6
68 kgMannaerts
7
73 kgKaňkovský
8
83 kgPage
9
64 kgSteimle
10
73 kgKrul
11
68 kgVan de Paar
12
79 kgSisr
13
72 kgVan Vuchelen
14
74 kgRekita
16
70 kgStockman
18
67 kgHuppertz
19
66 kgKowalski
22
67 kgO'Mahony
23
69 kgScaroni
24
63 kgPellaud
25
70 kgLemoine
26
62 kgMaitre
28
71 kgAntunes
29
55 kg
1
70 kgKrieger
3
71 kgde Kleijn
6
68 kgMannaerts
7
73 kgKaňkovský
8
83 kgPage
9
64 kgSteimle
10
73 kgKrul
11
68 kgVan de Paar
12
79 kgSisr
13
72 kgVan Vuchelen
14
74 kgRekita
16
70 kgStockman
18
67 kgHuppertz
19
66 kgKowalski
22
67 kgO'Mahony
23
69 kgScaroni
24
63 kgPellaud
25
70 kgLemoine
26
62 kgMaitre
28
71 kgAntunes
29
55 kg
Weight (KG) →
Result →
83
55
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | DAINESE Alberto | 70 |
3 | KRIEGER Alexander | 71 |
6 | DE KLEIJN Arvid | 68 |
7 | MANNAERTS Jelle | 73 |
8 | KAŇKOVSKÝ Alois | 83 |
9 | PAGE Dylan | 64 |
10 | STEIMLE Jannik | 73 |
11 | KRUL Stef | 68 |
12 | VAN DE PAAR Jarne | 79 |
13 | SISR František | 72 |
14 | VAN VUCHELEN Tom | 74 |
16 | REKITA Szymon | 70 |
18 | STOCKMAN Abram | 67 |
19 | HUPPERTZ Joshua | 66 |
22 | KOWALSKI Dylan | 67 |
23 | O'MAHONY Darragh | 69 |
24 | SCARONI Christian | 63 |
25 | PELLAUD Simon | 70 |
26 | LEMOINE Gaëtan | 62 |
28 | MAITRE Florian | 71 |
29 | ANTUNES Tiago | 55 |