Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Le Berre
2
68 kgPlowright
3
80 kgChrétien
5
65 kgVan Boven
7
68 kgVermeltfoort
8
85 kgNeuman
9
72 kgPenhoët
11
64 kgFernández
13
78 kgDauphin
14
70 kgMahoudo
15
61 kgSheehan
16
69 kgSunderland
17
67 kgKowalski
18
67 kgLamperti
19
74 kgPithie
20
74 kgBárta
23
75 kgPeltonen
24
69 kgLevasseur
27
74 kgBroex
29
75 kg
2
68 kgPlowright
3
80 kgChrétien
5
65 kgVan Boven
7
68 kgVermeltfoort
8
85 kgNeuman
9
72 kgPenhoët
11
64 kgFernández
13
78 kgDauphin
14
70 kgMahoudo
15
61 kgSheehan
16
69 kgSunderland
17
67 kgKowalski
18
67 kgLamperti
19
74 kgPithie
20
74 kgBárta
23
75 kgPeltonen
24
69 kgLevasseur
27
74 kgBroex
29
75 kg
Weight (KG) →
Result →
85
61
2
29
# | Rider | Weight (KG) |
---|---|---|
2 | LE BERRE Mathis | 68 |
3 | PLOWRIGHT Jensen | 80 |
5 | CHRÉTIEN Charles-Étienne | 65 |
7 | VAN BOVEN Luca | 68 |
8 | VERMELTFOORT Coen | 85 |
9 | NEUMAN Dominik | 72 |
11 | PENHOËT Paul | 64 |
13 | FERNÁNDEZ Miguel Ángel | 78 |
14 | DAUPHIN Florian | 70 |
15 | MAHOUDO Nolann | 61 |
16 | SHEEHAN Riley | 69 |
17 | SUNDERLAND Dylan | 67 |
18 | KOWALSKI Dylan | 67 |
19 | LAMPERTI Luke | 74 |
20 | PITHIE Laurence | 74 |
23 | BÁRTA Jan | 75 |
24 | PELTONEN Ukko Iisakki | 69 |
27 | LEVASSEUR Jordan | 74 |
29 | BROEX Victor | 75 |