Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Slock
1
78 kgVitzthum
2
70 kgLe Berre
3
68 kgVeistroffer
4
73 kgGee
5
72 kgSunderland
7
67 kgThompson
9
66 kgBaak
10
73 kgChrétien
11
65 kgMarsman
12
75 kgVan Eetvelt
13
63 kgTeugels
14
64 kgGuillon
15
66 kgCostiou
17
64 kgFernández
18
78 kgFrigo
19
70 kgŤoupalík
20
65 kgReinhardt
22
72 kgPenhoët
23
64 kg
1
78 kgVitzthum
2
70 kgLe Berre
3
68 kgVeistroffer
4
73 kgGee
5
72 kgSunderland
7
67 kgThompson
9
66 kgBaak
10
73 kgChrétien
11
65 kgMarsman
12
75 kgVan Eetvelt
13
63 kgTeugels
14
64 kgGuillon
15
66 kgCostiou
17
64 kgFernández
18
78 kgFrigo
19
70 kgŤoupalík
20
65 kgReinhardt
22
72 kgPenhoët
23
64 kg
Weight (KG) →
Result →
78
63
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SLOCK Liam | 78 |
2 | VITZTHUM Simon | 70 |
3 | LE BERRE Mathis | 68 |
4 | VEISTROFFER Baptiste | 73 |
5 | GEE Derek | 72 |
7 | SUNDERLAND Dylan | 67 |
9 | THOMPSON Reuben | 66 |
10 | BAAK Jord | 73 |
11 | CHRÉTIEN Charles-Étienne | 65 |
12 | MARSMAN Tim | 75 |
13 | VAN EETVELT Lennert | 63 |
14 | TEUGELS Lennert | 64 |
15 | GUILLON Célestin | 66 |
17 | COSTIOU Ewen | 64 |
18 | FERNÁNDEZ Miguel Ángel | 78 |
19 | FRIGO Marco | 70 |
20 | ŤOUPALÍK Adam | 65 |
22 | REINHARDT Theo | 72 |
23 | PENHOËT Paul | 64 |