Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 100
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Nishitani
2
62 kgSano
3
76 kgFukushima
4
62 kgHatanaka
6
72 kgUchima
7
63 kgShimizu
11
60 kgSuzuki
14
60 kgPhelan
17
73 kgFeng
20
68 kgSuzuki
25
57 kgTsuji
27
62 kgWong
28
65 kgMukaigawa
29
64 kgChan
30
70 kgNakane
34
55 kgHatsuyama
35
59 kgYamamoto
44
62 kgTokuda
47
67 kgSumiyoshi
52
56 kgMazuki
53
57 kg
2
62 kgSano
3
76 kgFukushima
4
62 kgHatanaka
6
72 kgUchima
7
63 kgShimizu
11
60 kgSuzuki
14
60 kgPhelan
17
73 kgFeng
20
68 kgSuzuki
25
57 kgTsuji
27
62 kgWong
28
65 kgMukaigawa
29
64 kgChan
30
70 kgNakane
34
55 kgHatsuyama
35
59 kgYamamoto
44
62 kgTokuda
47
67 kgSumiyoshi
52
56 kgMazuki
53
57 kg
Weight (KG) →
Result →
76
55
2
53
# | Rider | Weight (KG) |
---|---|---|
2 | NISHITANI Taiji | 62 |
3 | SANO Junya | 76 |
4 | FUKUSHIMA Shinichi | 62 |
6 | HATANAKA Yusuke | 72 |
7 | UCHIMA Kohei | 63 |
11 | SHIMIZU Miyataka | 60 |
14 | SUZUKI Shinri | 60 |
17 | PHELAN Adam | 73 |
20 | FENG Chun Kai | 68 |
25 | SUZUKI Yuzuru | 57 |
27 | TSUJI Yoshimitsu | 62 |
28 | WONG Kam-Po | 65 |
29 | MUKAIGAWA Naoki | 64 |
30 | CHAN Chun Hing | 70 |
34 | NAKANE Hideto | 55 |
35 | HATSUYAMA Sho | 59 |
44 | YAMAMOTO Genki | 62 |
47 | TOKUDA Tanzo | 67 |
52 | SUMIYOSHI Kota | 56 |
53 | MAZUKI Nur Amirul Fakhruddin | 57 |