Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 103
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Hatanaka
1
72 kgSuzuki
2
60 kgSano
4
76 kgNishitani
5
62 kgShimizu
6
60 kgUchima
7
63 kgFukushima
14
62 kgPhelan
17
73 kgFeng
21
68 kgTsuji
22
62 kgWong
23
65 kgChan
29
70 kgSuzuki
30
57 kgMukaigawa
31
64 kgNakane
34
55 kgHatsuyama
36
59 kgYamamoto
44
62 kgTokuda
47
67 kgSumiyoshi
51
56 kgMazuki
55
57 kg
1
72 kgSuzuki
2
60 kgSano
4
76 kgNishitani
5
62 kgShimizu
6
60 kgUchima
7
63 kgFukushima
14
62 kgPhelan
17
73 kgFeng
21
68 kgTsuji
22
62 kgWong
23
65 kgChan
29
70 kgSuzuki
30
57 kgMukaigawa
31
64 kgNakane
34
55 kgHatsuyama
36
59 kgYamamoto
44
62 kgTokuda
47
67 kgSumiyoshi
51
56 kgMazuki
55
57 kg
Weight (KG) →
Result →
76
55
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | HATANAKA Yusuke | 72 |
2 | SUZUKI Shinri | 60 |
4 | SANO Junya | 76 |
5 | NISHITANI Taiji | 62 |
6 | SHIMIZU Miyataka | 60 |
7 | UCHIMA Kohei | 63 |
14 | FUKUSHIMA Shinichi | 62 |
17 | PHELAN Adam | 73 |
21 | FENG Chun Kai | 68 |
22 | TSUJI Yoshimitsu | 62 |
23 | WONG Kam-Po | 65 |
29 | CHAN Chun Hing | 70 |
30 | SUZUKI Yuzuru | 57 |
31 | MUKAIGAWA Naoki | 64 |
34 | NAKANE Hideto | 55 |
36 | HATSUYAMA Sho | 59 |
44 | YAMAMOTO Genki | 62 |
47 | TOKUDA Tanzo | 67 |
51 | SUMIYOSHI Kota | 56 |
55 | MAZUKI Nur Amirul Fakhruddin | 57 |