Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 23
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Hatanaka
2
72 kgNakajima
3
64 kgSano
7
76 kgMat Amin
8
54 kgIino
11
61 kgFukushima
13
62 kgShimizu
15
60 kgGoesinnen
16
75 kgUchima
17
63 kgPark
19
73 kgAbe
23
66 kgYasuhara
29
62 kgYamamoto
35
62 kgIribe
36
61 kgFukuda
41
70 kgChoi
42
59 kgIshibashi
46
68 kgNorris
47
67 kgSchnaidt
53
70 kg
2
72 kgNakajima
3
64 kgSano
7
76 kgMat Amin
8
54 kgIino
11
61 kgFukushima
13
62 kgShimizu
15
60 kgGoesinnen
16
75 kgUchima
17
63 kgPark
19
73 kgAbe
23
66 kgYasuhara
29
62 kgYamamoto
35
62 kgIribe
36
61 kgFukuda
41
70 kgChoi
42
59 kgIshibashi
46
68 kgNorris
47
67 kgSchnaidt
53
70 kg
Weight (KG) →
Result →
76
54
2
53
# | Rider | Weight (KG) |
---|---|---|
2 | HATANAKA Yusuke | 72 |
3 | NAKAJIMA Yasuharu | 64 |
7 | SANO Junya | 76 |
8 | MAT AMIN Mohd Shahrul | 54 |
11 | IINO Tomoyuki | 61 |
13 | FUKUSHIMA Shinichi | 62 |
15 | SHIMIZU Miyataka | 60 |
16 | GOESINNEN Floris | 75 |
17 | UCHIMA Kohei | 63 |
19 | PARK Sung Baek | 73 |
23 | ABE Takayuki | 66 |
29 | YASUHARA Daiki | 62 |
35 | YAMAMOTO Genki | 62 |
36 | IRIBE Shotaro | 61 |
41 | FUKUDA Shinpei | 70 |
42 | CHOI Ki Ho | 59 |
46 | ISHIBASHI Manabu | 68 |
47 | NORRIS Lachlan | 67 |
53 | SCHNAIDT Fabian | 70 |