Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Hatsuyama
1
59 kgToribio
2
64 kgKers
5
71 kgGarcía de Mateos
10
68 kgHirai
13
63 kgNakajima
14
64 kgHatanaka
15
72 kgIshibashi
19
68 kgSuzuki
22
60 kgSeo
23
66 kgChan
26
70 kgTokuda
29
65 kgNishitani
34
62 kgIribe
37
61 kgSulzberger
38
67 kgMawatari
41
55 kgPark
42
73 kgGoh
43
54 kg
1
59 kgToribio
2
64 kgKers
5
71 kgGarcía de Mateos
10
68 kgHirai
13
63 kgNakajima
14
64 kgHatanaka
15
72 kgIshibashi
19
68 kgSuzuki
22
60 kgSeo
23
66 kgChan
26
70 kgTokuda
29
65 kgNishitani
34
62 kgIribe
37
61 kgSulzberger
38
67 kgMawatari
41
55 kgPark
42
73 kgGoh
43
54 kg
Weight (KG) →
Result →
73
54
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | HATSUYAMA Sho | 59 |
2 | TORIBIO José Vicente | 64 |
5 | KERS Koos Jeroen | 71 |
10 | GARCÍA DE MATEOS Vicente | 68 |
13 | HIRAI Eiichi | 63 |
14 | NAKAJIMA Yasuharu | 64 |
15 | HATANAKA Yusuke | 72 |
19 | ISHIBASHI Manabu | 68 |
22 | SUZUKI Shinri | 60 |
23 | SEO Joon Yong | 66 |
26 | CHAN Chun Hing | 70 |
29 | TOKUDA Suguru | 65 |
34 | NISHITANI Taiji | 62 |
37 | IRIBE Shotaro | 61 |
38 | SULZBERGER Bernard | 67 |
41 | MAWATARI Shinya | 55 |
42 | PARK Sung Baek | 73 |
43 | GOH Choon Huat | 54 |