Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 114
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Nijdam
1
70 kgSkibby
4
70 kgDuclos-Lassalle
5
73 kgBauer
6
72 kgGlaus
8
67 kgYates
12
74 kgMarie
15
68 kgDe Wilde
16
70 kgGayant
20
69 kgPieters
30
82 kgChevallier
32
69 kgKuiper
34
69 kgZoetemelk
37
68 kgHodge
38
74 kgSergeant
39
76 kgPeeters
48
76 kgSolleveld
66
93 kgAlonso
72
70 kgNevens
99
58 kgMadiot
100
68 kgVan Impe
108
59 kgHoste
111
76 kgJourdan
113
64 kgRué
123
74 kg
1
70 kgSkibby
4
70 kgDuclos-Lassalle
5
73 kgBauer
6
72 kgGlaus
8
67 kgYates
12
74 kgMarie
15
68 kgDe Wilde
16
70 kgGayant
20
69 kgPieters
30
82 kgChevallier
32
69 kgKuiper
34
69 kgZoetemelk
37
68 kgHodge
38
74 kgSergeant
39
76 kgPeeters
48
76 kgSolleveld
66
93 kgAlonso
72
70 kgNevens
99
58 kgMadiot
100
68 kgVan Impe
108
59 kgHoste
111
76 kgJourdan
113
64 kgRué
123
74 kg
Weight (KG) →
Result →
93
58
1
123
# | Rider | Weight (KG) |
---|---|---|
1 | NIJDAM Jelle | 70 |
4 | SKIBBY Jesper | 70 |
5 | DUCLOS-LASSALLE Gilbert | 73 |
6 | BAUER Steve | 72 |
8 | GLAUS Gilbert | 67 |
12 | YATES Sean | 74 |
15 | MARIE Thierry | 68 |
16 | DE WILDE Etienne | 70 |
20 | GAYANT Martial | 69 |
30 | PIETERS Peter | 82 |
32 | CHEVALLIER Philippe | 69 |
34 | KUIPER Hennie | 69 |
37 | ZOETEMELK Joop | 68 |
38 | HODGE Stephen | 74 |
39 | SERGEANT Marc | 76 |
48 | PEETERS Wilfried | 76 |
66 | SOLLEVELD Gerrit | 93 |
72 | ALONSO Marino | 70 |
99 | NEVENS Jan | 58 |
100 | MADIOT Marc | 68 |
108 | VAN IMPE Lucien | 59 |
111 | HOSTE Frank | 76 |
113 | JOURDAN Christian | 64 |
123 | RUÉ Gérard | 74 |